Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
Lời giải:
a) Vì \(\frac{\pi }{2} < a < \pi \) nên cos a < 0.
Mặt khác, từ sin2 a + cos2 a = 1 suy ra
cos a = \( - \sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}} = - \frac{{\sqrt 6 }}{3}\).
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right)\)\( = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6}\)
\( = \left( { - \frac{{\sqrt 6 }}{3}} \right).\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = \frac{{ - \sqrt 6 - 1}}{{2\sqrt 3 }} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\).
b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên sin a < 0, do đó \(\tan a = \frac{{\sin a}}{{\cos a}} > 0\).
Mặt khác từ \(1 + {\tan ^2}a = \frac{1}{{{{\cos }^2}a}}\)
Suy ra \(\tan a = \sqrt {\frac{1}{{{{\cos }^2}a}} - 1} = \sqrt {\frac{1}{{{{\left( { - \frac{1}{3}} \right)}^2}}} - 1} = 2\sqrt 2 \).
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right)\)\( = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}}\)\( = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 .1}} = \frac{{9 - 4\sqrt 2 }}{7}\).
Hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác
Ta có những hệ thức sau liên hệ giữa các giá trị lượng giác của cùng một góc lượng giác α:
• sin2α + cos2α = 1
• tan α . cot α = 1 với k ∈ ℤ
• với k ∈ ℤ
• với α ≠ kπ, k ∈ ℤ
Công thức cộng
• cos(α + β) = cosα.cosβ – sinα.sinβ;
• cos(α – β) = cosα.cosβ + sinα.sinβ;
• sin(α + β) = sinα.cosβ + cosα.sinβ;
• sin(α – β) = sinα.cosβ − cosα.sinβ;
•
•
Công thức góc nhân đôi
- Công thức góc nhân đôi là công thức tính các giá trị lượng giác của góc 2α qua các giá trị lượng giác của góc α.
- Công thức góc nhân đôi bao gồm những công thức sau:
• cos2α = cos2α – sin2α = 2cos2α – 1 = 1 – 2sin2α;
• sin2α = 2sinα . cosα;
•
Công thức biến đổi tích thành tổng
Công thức biến đổi tổng thành tích
•
•
•
•
Bài tập liên quan:
Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Cách giải:
Ta có: sin(a + b) sin(a – b) = [cos(a + b – a + b) – cos(a + b + a – b)]
= [cos 2b – cos 2a] = [(2cos2 b – 1) – (2cos2 a – 1)] = cos2 b – cos2 a.
Vậy sin(a + b) sin(a – b) = cos2 b – cos2 a (1).
Lại có, cos 2b – cos 2a = (1 – 2sin2 b) – (1 – 2sin2 a) = 2(sin2 a – sin2 b)
Do đó, [cos 2b – cos 2a] = . 2(sin2 a – sin2 b) = sin2 a – sin2 b.
Vậy sin(a + b) sin(a – b) = sin2 a – sin2 b (2).
Từ (1) và (2), suy ra sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a (đpcm).
Tham khảo thêm một số tài liệu liên quan:
Lý thuyết Công thức lượng giác (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
Tính sin 2a, cos 2a, tan 2a, biết:
a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);
b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).
Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
Không dùng máy tính, tính giá trị của các biểu thức:
A = cos 75° cos 15°; B = \(\sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}}\).
Không dùng máy tính, tính giá trị của biểu thức
B = \[\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9} + \cos \frac{{11\pi }}{9}\].
Chứng minh rằng:
a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).
Cho tam giác ABC có \(\widehat B = 75^\circ \); \(\widehat C = 45^\circ \) và a = BC = 12 cm.
a) Sử dụng công thức \(S = \frac{1}{2}ab\sin C\) và định lí sin, hãy chứng minh diện tích của tam giác ABC cho bởi công thức
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\).
b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.
Khi nhấn một phím trên điện thoại cảm ứng, bàn phím sẽ tạo ra hai âm thuần, kết hợp với nhau để tạo ra âm thanh nhận dạng duy nhất phím. Hình 1.13 cho thấy tần số thấp f1 và tần số cao f2 liên quan đến mỗi phím. Nhấn một phím sẽ tạo ra sóng âm y = sin(2πf1t) + sin(2πf2t), ở đó t là biến thời gian (tính bằng giây).
a) Tìm hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4.
b) Biến đổi công thức vừa tìm được ở câu a về dạng tích của một hàm số sin và một hàm số côsin.
Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ ∈ [–π; π] là pha ban đầu của dao động.
Xét hai dao động điều hòa có phương trình:
\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),
\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.
Xây dựng công thức biến đổi tích thành tổng
a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.
b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.