Số hữu tỉ \[\frac{3}{4}\] được biểu diễn bởi:
A. Bốn điểm trên trục số;
B. Ba điểm trên trục số;
C. Hai điểm trên trục số;
D. Một điểm duy nhất trên trục số.
Đáp án đúng là: D
Trên trục số mỗi số chỉ được biểu diễn bởi một điểm duy nhất. Số hữu tỉ \[\frac{3}{4}\]được biểu diễn trên trục số như hình dưới đây:
Khái niệm số hữu tỉ và biểu diễn số hữu tỉ trên trục số
• Số hữu tỉ là số viết được dưới dạng phân số với a, b ∈ , b ≠ 0.
Tập hợp các số hữu tỉ được kí hiệu là .
• Cách biểu diễn số hữu tỉ trên trục số:
+ Chia đoạn thẳng đơn vị thành b phần bằng nhau, lấy một đoạn làm đơn vị mới.
+ Điểm biểu diễn số hữu tỉ cách O một đoạn bằng a đơn vị mới và nằm trước O (nếu số hữu tỉ âm) hoặc nằm sau O (nếu số hữu tỉ dương).
Ví dụ 1:
+ Các số – 7; 0,3; – 2 là các số hữu tỉ vì chúng viết được dưới dạng phân số: – 7 = ; 0,3 = ; – 2 = .
+ Biểu diễn số hữu tỉ trên trục số ta làm như sau:
Chia đoạn thẳng đơn vị thành 2 phần bằng nhau. Lấy một đoạn làm đơn vị mới (H.a).
Số hữu tỉ được biểu diễn bởi điểm N (nằm sau gốc O) và cách O một đoạn bằng 3 đơn vị mới (H.b)
+ Số đối của số hữu tỉ là số hữu tỉ được biểu diễn bởi điểm M (nằm trước gốc O). Ta có OM = ON.
Chú ý:
• Mỗi số hữu tỉ đều có một số đối. Số đối của số hữu tỉ m là số hữu tỉ – m.
• Số thập phân có thể viết dưới dạng phân số thập phân nên chúng đều là các số hữu tỉ. Tương tự, số nguyên, hỗn số cũng là các số hữu tỉ.
• Trên trục số, hai điểm biểu diễn của hai số hữu tỉ đối nhau nằm về hai phía khác nhau so với điểm O và có cùng khoảng cách đến O.
Xem thêm một số kiến thức liên quan:
20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án – Toán lớp 7
Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức) hay, chi tiết | Toán lớp 7
Cho a, b \[ \in \mathbb{Z}\], b ≠ 0, x = \[\frac{a}{b}\]. Nếu a, b khác dấu thì:
Số đối của các số hữu tỉ sau: 0,5; −2; 9; \[\frac{{ - 7}}{9}\] lần lượt là:
Sắp xếp các số hữu tỉ \[\frac{{ - 1}}{4};\,\,\frac{{ - 3}}{2};\,\,\frac{4}{5};\,\,0\] theo thứ tự tăng dần?
Trong các trường hợp sau trường hợp nào có các số cùng biểu thị một số hữu tỉ \[\frac{{ - \,2}}{3}\]?
Số hữu tỉ \[\frac{x}{6}\] không thỏa mãn điều kiện sau \[\frac{{ - 1}}{2} < \frac{x}{6} < \frac{1}{2}\] là:
</>
Trong các trường hợp sau, trường hợp nào có các số cùng biểu thị một số hữu tỉ \[ - \frac{1}{2}\]?
Số hữu tỉ là số được viết dưới dạng phân số \[\frac{a}{b}\] với: