Hàm số nào sau đây không có cực trị?
A.
B.
C.
D.
Chọn D
+ A. Có . Do đó, hàm số này luôn đồng biến trên R.
Hay nói cách khác, hàm số này không có cực trị.
+ B. Đây là hàm số bậc 3 có . Do đó, hàm số này có 2 cực trị.
+ C. Hàm số trùng phương luôn có cực trị.
+ D. Đây là hàm số bậc 3 có . Do đó, hàm số này có 2 cực trị
Quy tắc tìm cực trị của hàm số.
Quy tắc 1.
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.
Bước 3: Lập bảng biến thiên.
Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2.
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Tính f'(x). Giải phương trình f'(x) và ký hiệu xi (i = 1,2,3...) là các nghiệm.
Bước 3: Tính f''(x) và f''(xi) .
Bước 4: Dựa vào dấu của f''(xi) suy ra tính chất cực trị của điểm xi .
Xem thêm một số kiến thức liên quan:
Biết đồ thị hàm số có điểm cực trị là A(1;3). Khi đó giá trị của 4a-b là
Cho hàm số . Nếu đồ thị hàm số có 2 điểm cực trị là gốc tọa độ và điểm thì hàm số có phương trình là
Cho hàm số . Gọi hoành độ 2 điểm cực trị của đồ thị hàm số là . Khi đó, tích số có giá trị là
Cho hàm số . Gọi a,b lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số đó. Giá trị của là: