Hai tam giác ABC và MNP bằng nhau khi và chỉ khi điều này dưới đây xảy ra?
A. BC = NP, , ;
B. BC = NP, , ;
C. BC = NP, , ;
D. BC = NP, , ;
Đáp án đúng là C
+) Ta có: tam giác ABC bằng tam giác MNP nên: BC = NP, , (các cặp cạnh và cặp góc tương ứng).
+) Các yếu tố trong các đáp án liên quan đến hai cặp góc và một cặp cạnh nên trường hợp được dùng để chứng minh hai tam giác ABC và MNP là góc – cạnh – góc. Do đó nếu BC = NP, , thì hai tam giác ABC và MNP bằng nhau.
Vậy hai tam giác ABC và MNP bằng nhau khi và chỉ khi BC = NP,,
Cho hình vẽ dưới đây, biết rằng AC = BD, BC = AD, , .
Chứng minh rằng ∆ABC = ∆BDA.
Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G, E, H thẳng hàng. Chứng minh rằng:
a)Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như hình bên.
a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau.
Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY. Chứng minh .
Hai tam giác ABC và MNP bằng nhau khi và chỉ khi điều này dưới đây xảy ra?
A. AB = MN, AC = MP, ;
B. AB = MN, AC = MP, ;
C. AB = MP, AC = MN, ;
D. AB = AC, MN = MP, ;
Chứng minh rằng hai tam giác ADE và BCE trong hình dưới đây bằng nhau.
Cho tam giác ABC. Câu nào dưới đây là đúng?
A. Góc A và góc C kề với cạnh AC;
B. Góc A xen giữa cạnh BA và CB;
C. Cạnh AC có một góc kề là góc B;
D. Góc B và C xen giữa cạnh BC.
Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.