Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ.
– Hình 7a:
Gọi tên các đỉnh của đồ thị ở Hình 7a như hình vẽ.
Ta có d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = 2 và d(M) = d(N) = d(P) = d(Q) = d(R) = d(S) = 4.
Suy ra đồ thị ở Hình 7a có tất cả các đỉnh đều có bậc chẵn.
Do đó đồ thị ở Hình 7a có chu trình Euler.
Nói cách khác, ta có thể vẽ Hình 7a bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: NAMSERQCPNBPQDRSFMN.
– Hình 7b:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(M) = d(U) = 1;
⦁ d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = d(G) = d(H) = d(I) = d(J) = d(K) = d(L) = 2;
⦁ d(N) = d(P) = d(Q) = d(R) = d(S) = d(T) = 4.
Suy ra đồ thị ở Hình 7b có đúng 2 đỉnh bậc lẻ là M và U.
Do đó đường đi Euler đi từ đỉnh M đến đỉnh U.
Nói cách khác, ta có thể vẽ Hình 7b bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: MNBCTDANPFGSHEPQJKRLIQRSTU.
– Hình 7c:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(E) = 1;
⦁ d(A) = d(B) = d(G) = 4;
⦁ d(F) = d(C) = d(D) = 3.
Suy ra đồ thị ở Hình 7c có 4 đỉnh bậc lẻ.
Do đó đồ thị ở Hình 7c không có đường đi Euler và cũng không có chu trình Euler.
Nói cách khác, ta không thể vẽ Hình 7c bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Cho đồ thị ở Hình 3, phát biểu nào sau đây đúng?
A. Đồ thị có chu trình Euler.
B. Đồ thị đường đi Euler xuất phát từ đỉnh A.
C. Đồ thị đường đi Euler xuất phát từ đỉnh E.
D. Đồ thị không có đường đi Euler.
Mỗi đồ thị trong Hình 6 có chu trình Hamilton không? Nếu có hãy chỉ ra một chu trình như vậy. Nếu không, đồ thị có đường đi Hamilton không? Nếu có, hãy chỉ ra một đường đi như vậy.
Tìm đường đi ngắn nhất từ đỉnh M đến N trong đồ thị có trọng số sau:
Tổng tất cả bậc của các đỉnh của đồ thị ở Hình 1 là
A. 20.
B. 18.
C. 12.
D. 9.
Đồ thị ở Hình 2 có bao nhiêu đỉnh bậc lẻ?
A. 6.
B. 7.
C. 8.
D. 9.
Cho tập hợp số V = {1; 2; 3; 4; 5; 6; 7}. Hãy vẽ đồ thị G có các đỉnh biểu diễn các phần tử của V, hai đỉnh biểu diễn hai số m và n kề nhau nếu m + n là bội của 3.
Số đỉnh, số cạnh của đồ thị ở Hình 1 lần lượt là
A. 3 đỉnh, 8 cạnh.
B. 4 đỉnh, 8 cạnh.
C. 3 đỉnh, 9 cạnh.
D. 4 đỉnh, 9 cạnh.
Cho đồ thị có trọng số như Hình 4. Đường đi ngắn nhất từ A đến C là
A. AEC.
B. AEFC.
C. AC.
D. AFC.
Mỗi đồ thị trong Hình 5 có chu trình Euler không? Nếu có hãy chỉ ra một chu trình như vậy. Nếu không, đồ thị có đường đi Euler không? Nếu có, hãy chỉ ra một đường đi như vậy.