Câu hỏi:

23/07/2024 56.6 K

Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB = 2a. Góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30°. Thể tích của khối lăng trụ đã cho bằng


A. 3a3;



B. a3;


C. 122a3;

D.42a3.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

Ta có: ABACABAA'ABACC'A'ABAC'

Vậy góc giữa đường thẳng BC' và mặt phẳng (ACC'A') là .BC'A^

Trong tam giác vuông (BC'A) ta có BC'A^=30°;AB=2a

AC'=AB.cotBC'A^=2a3

Trong tam giác vuông ACC' ta có .CC'=AC'2AC2=22a

Vậy thể tích khối lăng trụ đã cho là:V=CC'.12AB2=22a.12.4a2=42a3.

Phương pháp giải:

+) Công thức thể tích khối lăng trụ:

Tất tần tật về tính thể tích khối lăng trụ và cách giải 

với:     S: Diện tích đáy

      h: Chiều cao.

+) Phương pháp tính thể tích lăng trụ

Bước 1: Xác định và tính chiều cao của khối lăng trụ

+) Trong nhiều trường hợp, chiều cao của khối đa diện được cho ngay từ đầu bài (chiều cao cho trực tiếp), nhưng cũng có trường hợp việc xác định phải dựa vào các định lí về quan hệ vuông góc (chiều cao cho gián tiếp), hay dùng nhất là: định lí 3 đường vuông góc, các định lí về điều kiện để một đường thẳng vuông góc với một mặt phẳng, …

+) Tính độ dài chiều cao: Sử dụng định lí Pitago, hoặc nhờ hệ thức lượng trong tam giác vuông, tỉ số lượng giác trong tam giác vuông, định lý cosin, …

+) Có thể tính chiều cao bằng cách chuyển về bài toán tìm khoảng cách từ một điểm đến một mặt phẳng.

Nếu OA // (α) thì d(O,(α)) = d(A,(α)) 

Nếu Tất tần tật về tính thể tích khối lăng trụ và cách giải(định lý Ta-lét)

Bước 2: Tìm diện tích đáy bằng các công thức.

Bước 3: Sử dụng công thức tính thể tích.

Tham khảo thêm một số kiến thức liên quan

Lý thuyết và bài tập Thể tích khối lăng trụ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = |x4 - 2mx2 + 64x| có đúng ba điểm cực trị

Xem đáp án » 02/11/2024 35.3 K

Câu 2:

Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng ba số nguyên b thỏa mãn (3b - 3)(a.2b - 18) < 0?

Xem đáp án » 23/07/2024 28 K

Câu 3:

Cho các số phức z1, z2, z3 thỏa mãn |z1| = |z2| = 2|z3| = 2 và 8(z1 + z2)z3 = 3z1z2. Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng

Xem đáp án » 09/12/2024 24.4 K

Câu 4:

Cho hàm số f (x) = (m - 1)x4 - 2mx2 + 1 với m là tham số thực. Nếu min0;3fx=f2 thì max0;3fx  bằng

Xem đáp án » 05/08/2024 24.1 K

Câu 5:

Cho khối lăng trụ có diện tích đáy là 3a2 và chiều cao 2a. Thể tích khối lăng trụ đã cho bằng

Xem đáp án » 19/08/2024 22.2 K

Câu 6:

Với a là số thực dương tùy ý, 4loga  bằng

Xem đáp án » 21/07/2024 14.9 K

Câu 7:

Trong không gian Oxyz, cho điểm A(1; 2; -2). Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là

Xem đáp án » 31/10/2024 12.5 K

Câu 8:

Cho hình nón có góc ở đỉnh là 120° và chiều cao bằng 4. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Tính diện tích của (S) bằng:

Xem đáp án » 03/08/2024 11.7 K

Câu 9:

Cho khối chóp S.ABC có chiều cao bằng 3, đáy ABC có diện tích bằng 10. Thể tích khối chóp S.ABC bằng

Xem đáp án » 23/07/2024 9.7 K

Câu 10:

Trong không gian Oxyz, cho điểm A(1; 2; -3). Hình chiếu vuông góc của A lên mặt phẳng (Oxy) có tọa độ là

Xem đáp án » 01/11/2024 7.4 K

Câu 11:

Có bao nhiêu giá trị nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?

Xem đáp án » 20/07/2024 6.7 K

Câu 12:

Trong không gian Oxyz, cho mặt cầu (S) tâm I(1; 3; 9) bán kính bằng 3. Gọi M , N là hai điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thẳng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kính bằng 132 . Gọi A là tiếp điểm của MN và (S), giá trị AM.AN bằng

Xem đáp án » 21/07/2024 5.9 K

Câu 13:

Xét tất cả các số thực x, y sao cho  với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + x - 3y bằng

Xem đáp án » 22/07/2024 5.1 K

Câu 14:

Cho hàm số fx=11cos22x . Khẳng định nào dưới đây đúng?

Xem đáp án » 18/07/2024 4.4 K

Câu hỏi mới nhất

Xem thêm »
Xem thêm »