Cho hàm số f (x) = (m - 1)x4 - 2mx2 + 1 với m là tham số thực. Nếu thì bằng
A.
B. 4;
C.
Đáp án đúng là: B
Phương pháp giải:
- Tính đạo hàm của hàm số, tìm nghiệm của phương trình .
- Dựa vào điều kiện để đánh giá, tìm ra .
- Thay vào hàm số và tìm .
Giải chi tiết:
Ta có:
f '(x) = 4(m - 1)x3 - 4mx = 4x[(m - 1)x2 - m]
f '(x) = 0 ( m = 1 không thỏa yêu cầu bài toán)
Vì Þ x = 2 là nghiệm của f '(x) = 0
f (0) = 1;
Vậy
Bài tập liên quan:
Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu min thì bằng?
Lời giải:
f '(x) = 4mx3 + 4(m - 1)x
Do f (x) là hàm đa thức và
Thay
Þ y' = 2x3 - 2x = 2x(x - 1)(x + 1)
Ta có BBT:
Vậy với , thì .
Dựa vào BBT ta có:
max[0;2]f(x)=f(2)=4.
Tham khảo thêm một số tài liệu liên quan:
Đề thi thử Toán 2024 phát triển từ đề tham khảo
500 Đề thi thử THPT Quốc gia 2024 môn Toán (cả nước, có lời giải)
Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB = 2a. Góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30°. Thể tích của khối lăng trụ đã cho bằng
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = |x4 - 2mx2 + 64x| có đúng ba điểm cực trị
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng ba số nguyên b thỏa mãn (3b - 3)(a.2b - 18) < 0?
Cho các số phức z1, z2, z3 thỏa mãn |z1| = |z2| = 2|z3| = 2 và 8(z1 + z2)z3 = 3z1z2. Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng
Cho khối lăng trụ có diện tích đáy là 3a2 và chiều cao 2a. Thể tích khối lăng trụ đã cho bằng
Trong không gian Oxyz, cho điểm A(1; 2; -2). Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
Cho hình nón có góc ở đỉnh là 120° và chiều cao bằng 4. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Tính diện tích của (S) bằng:
Cho khối chóp S.ABC có chiều cao bằng 3, đáy ABC có diện tích bằng 10. Thể tích khối chóp S.ABC bằng
Trong không gian Oxyz, cho điểm A(1; 2; -3). Hình chiếu vuông góc của A lên mặt phẳng (Oxy) có tọa độ là
Có bao nhiêu giá trị nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?
Trong không gian Oxyz, cho mặt cầu (S) tâm I(1; 3; 9) bán kính bằng 3. Gọi M , N là hai điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thẳng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kính bằng . Gọi A là tiếp điểm của MN và (S), giá trị AM.AN bằng
Xét tất cả các số thực x, y sao cho với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + x - 3y bằng