Cho hình chóp S.ABCD. M là điểm thuộc cạnh SB (không trùng với S và B). Thiết diện tạo bởi (AMD) và hình chóp S.ABCD là
Đáp án B
Ta có
Gọi
Gọi
=> Thiết diện khi cắt bởi hình chóp là tứ giác ADNM
Bài tập liên quan:
Cho tứ diện ABCD; gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD
A. tam giác MNE
B. tứ giác MNEF với F là điểm bất kì trên cạnh BD
C. hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC
D. hình thang MNEF với F là điểm trên cạnh BD mà EF // BC
Cách giải:
Đáp án D
Tam giác ABC có M, N lần lượt là trung điểm của AB, AC.
Suy ra MN là đường trung bình của tam giác ABC => MN // BC
Từ E kẻ đường thẳng d song song với BC và cắt BD tại F
=> EF // BC.
Do đó MN // EF suy ra bốn điểm M, N, E, F đồng phẳng và MNEF là hình thang
Vây hình thang MNEF là thiết diện cần tìm
Tham khảo thêm một số tài liệu liên quan:
Cách xác định thiết diện song song với đường thẳng 2024: phương pháp giải và 20 bài tập
Phương pháp giải và bài tập về Cách chứng minh hai mặt phẳng song song
Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P là các điểm lần lượt trên các cạnh CB, CD, SA. Tìm thiết diện của hình chóp cắt bởi mặt phẳng (MNP)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của SB và SD. Thiết diện của mặt phẳng (AIJ) với hình chóp là
Cho tứ diện ABCD; gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, cắt hình chóp bằng mặt phẳng (MNP), trong đó M, N, P lần lượt là trung điểm các cạnh AB, AD, SC. Thiết diện nhận được là
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo một thiết diện có diện tích
Cho hình chóp S.ABCD (AB và CD không song song) và M là điểm nằm trong ∆SCD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (ABM)
Cho tứ diện ABCD và ba điểm M, N, P lần lượt nằm trên các cạnh AB, AC, AD (không trùng với các đỉnh). Thiết diện của tứ diện cắt bởi mặt phẳng (MNP) là
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M, N lần lượt là trung điểm của SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong mặt phẳng (ABCD) vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành. Trên cạnh SC lấy điểm M. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (M,d).
Cho tứ diện ABCD. Gọi I, J lần lượt là các điểm nằm trên AB, AD sao cho BD và IJ không song song. Tìm thiết diện tạo bởi (CU) và hình chóp