Đáp án B
Ta có:
Chứng minh hai đường thẳng song song:
- Các tính chất của hai đường thẳng song song
+ Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho.
+ Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
+ Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một cắt nhau.
+ Hệ quả: Nếu hai mặt phẳng chứa hai đường thẳng song song với nhau thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
- Các cách để chứng minh hai đường thẳng song song:
+ Chứng minh hai đường thẳng đó cùng song song với đường thẳng thứ ba.
+ Chứng minh hai đường thẳng đó đồng phẳng, sau đó áp dụng các phương pháp chứng minh song song trong hình học phẳng (ví dụ tính chất đường trung bình, định lý Talet đảo, …).
+ Áp dụng định lý về giao tuyến song song.
+ Nếu hai mặt phẳng phân biệt lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Bài tập liên quan:
Cho hình chóp S.ABCD đáy ABCD là hình thang với cạnh đáy AB và CD . Gọi M, N lần lượt là trung điểm của SA, SB.
a) Chứng minh MN // CD
Cách giải:
a) Ta có MN là đường trung bình của tam giác SAB suy ra MN // AB. Mà AB // CD nên MN // CD
Tham khảo thêm một số tài liệu liên quan:
Chuyên đề Hai đường thẳng chéo nhau và hai đường thẳng song song 2023 hay, chọn lọc
Phương pháp giải về Đường thẳng song song với mặt phẳng 2023 (lý thuyết và bài tập)
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của mặt phẳng (SAD) và mặt phẳng (SBC) là đường thẳng song song với đường thẳng nào sau đây
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. . Gọi E, G lần lượt là trung điểm của SA và SB. M là điểm tùy ý trên cạnh BC (không trùng với B, C).
a) Xác định giao tuyến của các mặt phẳng (SAB) và (SCD); (SAD) và (SBC)
Cho hình chóp S.ABCD. Gọi I, J lần lượt là trung điểm của AB và BC. Giao tuyến của hai mặt phẳng (SAC) và (SIJ) là một đường thẳng song song với
b) Tìm giao điểm P của SC và mặt phẳng (AND). Kéo dài AN và DP cắt nhau tại I.
Chứng minh SI // AB // CD
Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Gọi M, N, P, Q là các điểm lần lượt trên BC, SC, SD, AD sao cho MN // BS, NP // CD, MQ // CD
a) Chứng minh PQ // SA
Cho hình chóp S.ABCD đáy ABCD là hình thang với cạnh đáy AB và CD . Gọi M, N lần lượt là trung điểm của SA, SB.
a) Chứng minh MN // CD