Câu hỏi:

08/11/2024 4.1 K

Cho hàm số y=x3x33mx2+2m2+1xm. Có bao nhiêu giá trị nguyên thuộc đoạn 6;6 của tham số m để đồ thị hàm số có bốn đường tiệm cận?

A. 12

B. 9

Đáp án chính xác

C. 8

D. 11

Trả lời:

verified Giải bởi Vietjack

Ta có:y=x3x33mx2+2m2+1xm

limx±fx=limx±x3x33mx2+2m2+1xm=limx±xx33x313mx2x3+2m2+1xx3mx3=0

Nên y = 0 là tiệm cận ngang của đồ thị hàm số.

Vậy để đồ thị hàm số có 4 đường tiệm cận thì đồ thị hàm số phải có 3 đường tiệm cận đứng.

Hay phương trình  x33mx2+2m2+1xm=0 (1) có ba nghiệm phân biệt  x3

Ta có:x33mx2+2m2+1xm=0

xmx22mx+1=0x=mx22mx+1=0  (*)

Để phương trình (1) có ba nghiệm phân biệt khác 3 thì m3 và phương trình (*) có hai nghiệm phân biệt khác m và khác 3.

Do đó:  Δ'=m21>0322.m.3+10m22m2+10m<1m>1m53m1m1m<1m>1m53

Kết hợp điều kiện  m36m6m6;5;4;3;2;2;4;5;6

Vậy có 9 giá trị của m thỏa mãn điều kiện

Đáp án cần chọn là: B

Phương pháp giải 

a) Đường tiệm cận ngang

Đường thẳng y = y0 được gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu:

limx+fx=y0 hoặc limxfx=y0.

b) Đường tiệm cận đứng

Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

Công thức xác định đường tiệm cận của đồ thị hàm số - Toán lớp 12

c) Đường tiệm cận xiên

Đường thẳng y = ax + b (a ≠ 0) được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu:

limx+fxax+b=0 hoặc limxfxax+b=0.

→ Để xác định hệ số a, b của đường tiệm cận xiên y = ax + b của đồ thị hàm số y = f(x), ta có thể áp dụng công thức sau:

Công thức xác định đường tiệm cận của đồ thị hàm số - Toán lớp 12

Chú ý: Hàm phân thức y=ax+bcx+d có TCN là y=ac và TCĐ là x=dc.

Xem thêm kiến thức liên quan

Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức) hay, chi tiết | Toán lớp 11

20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=2x23x+mxm. Để đồ thị hàm số không có tiệm cận đứng thì các giá trị của tham số m là:

Xem đáp án » 23/09/2024 8.9 K

Câu 2:

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc 10;10 để đồ thị hàm số y=mx24x1 có ba đường tiệm cận?

Xem đáp án » 22/07/2024 3.3 K

Câu 3:

Cho hàm số y=2mx+mx1C. Với giá trị nào của m( m0) thì đường tiệm cận đứng, đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8?

Xem đáp án » 21/07/2024 2.7 K

Câu 4:

Gọi S là tập hợp các giá trị nguyên m để đồ thị hàm số y=x+2x26x+2m có hai đường tiệm cận đứng. Số phần tử của S là:

Xem đáp án » 17/07/2024 2.6 K

Câu 5:

Số đường tiệm cận của đồ thị hàm số y=2x+1x23 là:

Xem đáp án » 22/07/2024 2.5 K

Câu 6:

Cho đồ thị hàm số bậc ba y=fx như hình vẽ. Hỏi đồ thị hàm số

y=x2+4x+3x2+xxf2x2fx có bao nhiêu đường tiệm cận đứng?

Xem đáp án » 21/07/2024 2.3 K

Câu 7:

Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y=x1x2+2mxm+2 có đúng hai đường tiệm cận. Tổng tất cả các phần tử của tập S bằng:

Xem đáp án » 16/07/2024 2.1 K

Câu 8:

Cho hàm số y=f(x) thỏa mãn limxfx=1 và limx+fx=m. Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số y=1fx+2 có duy nhất một tiệm cận ngang.

Xem đáp án » 19/07/2024 714

Câu 9:

Cho hàm số fx=ax3+bx2+cx+d có đồ thị như hình vẽ bên

Hỏi đồ thị hàm số gx=x23x+2x1xf2xfx có bao nhiêu tiệm cận đứng?

Xem đáp án » 16/07/2024 569

Câu 10:

Cho hàm số y=x2x242x7. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem đáp án » 18/07/2024 545

Câu 11:

Cho hàm số y=x2x22x+mC. Tất cả các giá trị của m để (C ) có 3 đường tiệm cận là:

Xem đáp án » 23/07/2024 509

Câu 12:

Cho hàm số y=ax2+3ax+2a+1x+2. Chọn kết luận đúng:

Xem đáp án » 22/07/2024 455

Câu 13:

Cho hàm số fx=ax+1bx+ca,b,cR có BBT như sau:

Trong các số a, b và c có bao nhiêu số dương?

Xem đáp án » 21/07/2024 426

Câu 14:

Cho hàm số y=fx có bảng biến thiên như sau:

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=1fx1 là:

Xem đáp án » 21/07/2024 370

Câu hỏi mới nhất

Xem thêm »
Xem thêm »