Cho hàm số . Để đồ thị hàm số không có tiệm cận đứng thì các giá trị của tham số m là:
A.
B.
C.
D. Không tồn tại m
Đáp án cần chọn là: B
Với m = 0 ta có x = 0 là nghiệm của đa thức trên tử không có tiệm cận đứng
Với m = 1 ta có x = 1 là nghiệm của đa thức trên tử không có tiệm cận đứng
Bài tập liên quan:
Cho hàm số . Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
A. 3
B. 2
C. 5
D. 4
Cách giải:
Đáp án cần chọn là: A
Xét hàm số :
TXĐ:
là đường TCĐ của đồ thị hàm số.
là đường TCĐ của đồ thị hàm số.
là đường TCĐ của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.
Tham khảo thêm một số tài liệu liên quan:
26 câu Trắc nghiệm Đường tiệm cận của đồ thị hàm số – Toán 12
29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số – Toán 12
Cho hàm số . Có bao nhiêu giá trị nguyên thuộc đoạn của tham số m để đồ thị hàm số có bốn đường tiệm cận?
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc để đồ thị hàm số có ba đường tiệm cận?
Cho hàm số . Với giá trị nào của m( ) thì đường tiệm cận đứng, đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8?
Gọi S là tập hợp các giá trị nguyên m để đồ thị hàm số có hai đường tiệm cận đứng. Số phần tử của S là:
Cho đồ thị hàm số bậc ba như hình vẽ. Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận đứng?
Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số có đúng hai đường tiệm cận. Tổng tất cả các phần tử của tập S bằng:
Cho hàm số thỏa mãn và . Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số có duy nhất một tiệm cận ngang.
Cho hàm số có đồ thị như hình vẽ bên
Hỏi đồ thị hàm số có bao nhiêu tiệm cận đứng?
Cho hàm số . Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hàm số . Tất cả các giá trị của m để (C ) có 3 đường tiệm cận là:
Cho hàm số có BBT như sau:
Trong các số a, b và c có bao nhiêu số dương?
Cho hàm số có bảng biến thiên như sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là: