Với giải bài 5 trang 44 Toán lớp 6 Tập 1 Chân trời sáng tạo chi tiết được biên soạn bám sát nội dung bài học Toán 6 Bài 13: Bội chung. Bội chung nhỏ nhất giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải Toán lớp 6 Bài 13: Bội chung. Bội chung nhỏ nhất
Bài 5 trang 44 Toán lớp 6 Tập 1: Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ 200 đến 300 bông.
Lời giải:
- Gọi x là số bông sen chị Hòa có. (x là số tự nhiên thuộc khoảng từ 200 đến 300)
- Vì chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông đều vừa hết nên số bông sen chị Hòa có là bội chung của 3, 5 và 7.
- Suy ra x ∈ BC(3, 5, 7)
Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau
⇒ BCNN(3, 5, 7) = 3 . 5 . 7 =105
⇒ BC(3, 5, 7) = B(105) = {0; 105; 210; 315;…}
⇒ x ∈ BC(3, 5, 7) ={0; 105; 210; 315;…}
Mà 200 ≤ x ≤ 300 Nên x = 210.
Số bông sen chị Hòa có là 210 bông.
Bài tập vận dụng:
Bài 1: Tìm:
a) BC(6, 14);
b) BC(6, 20, 30);
c) BCNN(10, 1, 12).
Hướng dẫn giải
a) Phân tích 6 và 14 ra thừa số nguyên tố, ta được:
6 = 2 . 3; 14 = 2 . 7.
Khi đó, BCNN(6, 14) = 2 . 3 . 7 = 42.
Do đó BC(6, 14) = {0; 42; 84; 126; …}.
Vậy BC(6, 14) = B(42) = {0; 42; 84; 126; …}.
b) Phân tích 6; 20 và 30 ra thừa số nguyên tố, ta được:
6 = 2 . 3; 20 = 22 . 5; 30 = 2 . 3 . 5.
Khi đó, BCNN(6, 20, 30) = 22 . 3 . 5 = 60.
Do đó BC(6, 20, 30) = B(60) = {0; 60; 120; 180; …}.
Vậy BC(6, 20, 30) = {0; 60; 120; 180; …}.
c) Ta có: BCNN(10, 1, 12) = BCNN(10, 12).
Phân tích 10 và 12 ra thừa số nguyên tố, ta được:
10 = 2 . 5; 12 = 22 . 3.
Khi đó BCNN(10, 12) = 22 . 3 . 5 = 60.
Vậy BCNN(10, 1, 12) = BCNN(10, 12) = 60.
Bài 2: Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a ⋮ 126, a ⋮ 198.
Hướng dẫn giải
Vì a ⋮ 126 và a ⋮ 198 nên a là BC(126, 198).
Vì a là số tự nhiên nhỏ nhất nên a BCNN(126, 198).
Ta có: 126 = 2 . 32 . 7;
198 = 2 . 32 . 11.
Thừa số nguyên tố chung và riêng là 2; 3; 7 và 11.
Số mũ lớn nhất của 2 là 2, của 3 là 2, của là 7 và của 11 là 1.
BCNN(126, 198) = 2 . 32 . 7 . 11 = 1 386.
Vậy a = 1386.
Bài 3: Hai bạn Tùng và Hải thường đến thư viện đọc sách. Tùng cứ 8 ngày đến thư viện 1 lần, Hải 10 ngày 1 lần. Lần đầu cả hai bạn cùng đến thư viện vào một ngày. Hỏi ít nhất bao nhiêu ngày thì hai bạn cùng đến thư viện?
Hướng dẫn giải
Gọi a (ngày) là số ngày ít nhất hai bạn cùng đến thư viện (, x ≥ 10).
Số ngày ít nhất hai bạn cùng đến thư viện thuộc bội chung nhỏ nhất của 8 và 10.
Khi đó, a BCNN(8, 10).
Ta có: 8 = 23; 10 = 2 . 5
Do đó BCNN(8, 10) = 23 . 5 = 40 (thỏa mãn điều kiện).
Vậy sau 40 ngày thì hai bạn cùng đến thư viện.
Xem thêm các bài giải bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:
Thực hành 3 trang 42 Toán lớp 6 Tập 1: Viết tập hợp BC(4, 7), từ đó chỉ ra BCNN(4, 7)...
Thực hành 4 trang 42 Toán lớp 6 Tập 1: Tìm BCNN(24, 30); BCNN(3, 7, 8); BCNN(12, 16, 48)...
Thực hành 5 trang 42 Toán lớp 6 Tập 1: Tìm BCNN(2, 5, 9); BCNN(10, 15, 30)...
Thực hành 6 trang 43 Toán lớp 6 Tập 1: 1) Quy đồng mẫu các phân số sau...
Bài 1 trang 43 Toán lớp 6 Tập 1: Tìm: a) BC(6, 14); b) BC(6, 20, 30); c) BCNN(1, 6)...
Bài 2 trang 43 Toán lớp 6 Tập 1: a) Ta có BCNN(12, 16) = 48. Hãy viết tập hợp A các bội của 48...
Bài 3 trang 43 Toán lớp 6 Tập 1: Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất)...
Bài 4 trang 44 Toán lớp 6 Tập 1: Thực hiện phép tính (có sử dụng bội chung nhỏ nhất)...