Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
A. Hàm số đã cho nghịch biến trên khoảng (; 0)
B. Hàm số đã cho nghịch biến trên khoảng (0;)
C. Hàm số đã cho đồng biến trên khoảng (; π)
D. Hàm số đã cho nghịch biến trên khoảng (;)
Đáp án D
Hàm số đã cho tuần hoàn với chu kỳ 2 và kết hợp với các phương án đề bài thì ta sẽ xét sự biến thiên của hàm số trên (-π/2; 3π/2)
Ta có hàm số y = sin x
* Đồng biến trên khoảng (-π/2; π/2)
* Nghịch biến trên khoảng (π/2; 3π/2)
Từ đây suy ra hàm số y = 1 - sinx
* Nghịch biến trên khoảng (-π/2; π/2)
* Đồng biến trên khoảng (π/2; 3π/2)
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số sau: y = cosx + cos(x)
Xét tính chẵn lẻ của hàm số y = f(x) = cos(2x + ) + sin(2x - ), ta được
Cho hàm số y = 4sin(x + ) cos(x - ) - sin2x. Kết luận nào sau đây là đúng về sự biến thiên của hàm số đã cho?