Xét một chất điểm chuyển động trên một trục số nằm ngang, chiều dương từ trái sang phải (H.1.1). Giả sử vị trí s(t) (mét) của chất điểm trên trục số đã chọn tại thời điểm t (giây) được cho bởi công thức s(t) = t3 – 9t2 + 15t, t ³ 0. Hỏi trong khoảng thời gian nào thì chất điểm chuyển động sang phải, trong khoảng thời gian nào thì chất điểm chuyển động sang trái?
Ta có s(t) = t3 – 9t2 + 15t.
Có v(t) = s'(t) = 3t2 – 18t + 15.
Chất điểm chuyển động sang phải khi v(t) > 0.
Có v(t) > 0 và v(t) < 0 1 < t < 5.
Chất điểm chuyển động sang phải khi t ∈ (0; 1) và (5; +∞).
Chất điểm chuyển động sang trái khi t ∈ (1; 5).
Lý thuyết Cực trị của hàm số:
Khái niệm cực trị của hàm số
Cho hàm số y = f(x) xác định và liên tục trên khoảng (a;b) (a có thể là , b có thể là ) và điểm .
|
Cách tìm cực trị của hàm số
Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm và có đạo hàm trên các khoảng và . Khi đó:
|
Bài tập liên quan:
Cho hàm số y = f(x) = |x|.
a) Tính các giới hạn và .
Từ đó suy ra hàm số không có đạo hàm tại x = 0.
Cách giải:
Tham khảo thêm một số tài liệu liên quan:
Lý thuyết Toán 12 Kết nối tri thức | Tổng hợp kiến thức Toán 12 Kết nối tri thức hay, chi tiết
Lý thuyết Tính đơn điệu và cực trị của hàm số (Kết nối tri thức 2024) | Lý thuyết Toán 12
Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số trong đó N(t) được tính bằng nghìn người.
a) Tính số dân của thị trấn đó vào các năm 2000 và 2015.
Giải thích vì sao nếu f'(x) không đổi dấu khi x qua x0 thì x0 không phải là điểm cực trị của hàm số f(x)?
Đồ thị của đạo hàm bậc nhất y = f'(x) của hàm số f(x) được cho trong hình 1.13.
a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích.
b) Tính đạo hàm N'(t) và . Từ đó, giải thích tại sao số dân của thị trấn đó luôn tăng nhưng sẽ không vượt quá một ngưỡng nào đó.
b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại x = 0 (xem hình 1.4).
Một vật được phóng thẳng đứng lên trên từ độ cao 2m với vận tốc ban đầu là 24,5 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí thì độ cao h (mét) của vật sau t (giây) được cho bởi công thức : h(t) = 2 + 24,5t – 4,9t2.
Hỏi tại thời điểm nào thì vật đạt độ cao lớn nhất?
Tìm các khoảng đồng biến, khoảng nghịch biến của các hàm số có đồ thị như sau:
a) Đồ thị hàm số (H.1.11);
b) Tại giá trị nào của x thì f(x) có cực đại và cực tiểu? Giải thích.