Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị đối xứng qua đường thẳng:
A. m = 0
B. m = 1
C. m = -1
D. Không tồn tại
Chọn D
Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> <=>
Chia y cho y’ ta được:
Giả sử là hai nghiệm phân biệt của y’=0.
Phương trình đường thẳng đi qua hai điểm cực trị có dạng
(d) có vectơ pháp tuyến là
Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)
Thử lại khi m=0 ta có:
y''(0) = 6 > 0; y''(-2) = -6 < 0
Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)
Trung điểm của OA là I(-1;2).
Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.
Tìm tất cả các giá trị của tham số m để hàm số đạt cực đại tại x = 1.
Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?
Cho hàm số Tìm m để hàm số có 3 điểm cực trị là 3 đỉnh của 1 tam giác vuông
Tìm a, b, c sao cho hàm số có giá trị bằng 0 khi x = 1 và đạt cực trị khi bằng 0 khi x = -1 .
Với giá trị nào của m, hàm số đạt cực tiểu tại điểm có hoành độ x = 0?
Cho hàm số Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:
Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là