Câu hỏi:

19/07/2024 6.2 K

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.

Trả lời:

verified Giải bởi Vietjack

Lời giải

Với A(–2; 1), B(1; 4) và C(5; −2) ta có:

\(\overrightarrow {AB} \) = (3; 3) và \(\overrightarrow {AC} \) = (7; –3)

Vì \(\frac{3}{7} \ne \frac{3}{{ - 3}} = - 1\) nên hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + 1 + 5}}{3} = \frac{4}{3}\\{y_G} = \frac{{1 + 4 + \left( { - 2} \right)}}{3} = 1\end{array} \right.\) \( \Rightarrow G\left( {\frac{4}{3};1} \right)\)

Vậy tọa độ trọng tâm của tam giác ABC là: \(G\left( {\frac{4}{3};1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

Xem đáp án » 21/07/2024 13.2 K

Câu 2:

Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng

Xem đáp án » 23/07/2024 8 K

Câu 3:

Cho tam giác ABC đều có độ dài các cạnh bằng 3a. Lấy điểm M thuộc cạnh BC sao cho MB = 2MC. Tích vô hướng của hai vectơ \(\overrightarrow {MA} \) và \[\overrightarrow {MC} \] bằng

Xem đáp án » 21/07/2024 5.8 K

Câu 4:

Một ô tô có khối lượng 2,5 tấn chạy từ chân lên đỉnh một con dốc thẳng. Tính công của trọng lực tác động lên xe, biết dốc dài 50 m và nghiêng 15° so với phương nằm ngang (trong tính toán, lấy gia tốc trọng trường bằng 10 m/s²).

Xem đáp án » 19/07/2024 5.4 K

Câu 5:

Cho tam giác ABC và điểm I sao cho \(\overrightarrow {IB} + 2\overrightarrow {IC} = \overrightarrow 0 .\) Khẳng định nào sau đây là một khẳng định đúng?

Xem đáp án » 17/07/2024 4.5 K

Câu 6:

Cho tam giác ABC có AB = 1, BC = 2 và \[\widehat {ABC} = 60^\circ .\] Tích vô hướng \[\overrightarrow {BC} .\overrightarrow {CA} \] bằng

Xem đáp án » 19/07/2024 3.7 K

Câu 7:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2; −1), B(–1; 5) và C(3m; 2m –1). Tất cả các giá trị của tham số m sao cho AB ⊥ OC là

Xem đáp án » 20/07/2024 3 K

Câu 8:

Cho hình thoi ABCD có độ dài các cạnh bằng 1 và \[\widehat {DAB} = 120^\circ .\] Khẳng định nào sau đây là đúng?

Xem đáp án » 21/07/2024 2.7 K

Câu 9:

Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A, B, C, D và O. Số các vectơ khác vectơ - không và cùng phương với \(\overrightarrow {AC} \) là:

Xem đáp án » 14/07/2024 2.5 K

Câu 10:

B. Tự luận

Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.

Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)

Xem đáp án » 20/07/2024 2 K

Câu 11:

Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD. Lấy P thuộc đoạn DM và Q thuộc đoạn BN sao cho DP = 2PM, BQ = xQN. Đặt \[\overrightarrow {AB} = \overrightarrow u \] và \[\overrightarrow {AD} = \overrightarrow v .\]

a) Hãy biểu thị các vectơ \[\overrightarrow {AP} {\rm{, }}\overrightarrow {AQ} \] qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v .\)

b) Tìm x đề A, P, Q thằng hàng.

Xem đáp án » 20/07/2024 1.9 K

Câu 12:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Xem đáp án » 16/07/2024 1.8 K

Câu 13:

Cho tam giác ABC có AB = 2, BC = 4 và \(\widehat {ABC} = 60^\circ .\) Độ dài của vectơ \(\overrightarrow {AC} - \overrightarrow {BA} \) bằng

Xem đáp án » 20/07/2024 1.5 K

Câu 14:

Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.

Chứng minh rằng BI = IJ = JD.

Xem đáp án » 16/07/2024 1.4 K