Trong không gian Oxyz, cho ba điểm A(1; 2; -1), B(3; 0; 1) và C(2; 2; -2). Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là
A.
B.
C.
Đáp án đúng là: C
Ta có:
Vì đường thẳng cần tìm vuông góc với mặt phẳng (ABC) nên đường thẳng cần tìm có véctơ chỉ phương là và đi qua A(1; 2; -1). Suy ra phương trình đường thẳng cần tìm là:
Phương trình đường thẳng:
• Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a→ = (a1; a2; a3) với a12 + a22 + a32 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình tham số là :
• Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a→ = (a1; a2; a3) sao cho a1a2a3 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình chính tắc là :
Dạng bài: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α).
Cách giải:
Xác định vectơ chỉ phương của Δ là aΔ→ = nα→, với nα→ là vectơ pháp tuyến của (α).
Tham khảo thêm một số tài liệu liên quan:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = 2a và AA' = 3a (tham khảo hình bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng
Có bao nhiêu số nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thỏa mãn (5b - 1)(a.2b - 5) < 0?
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 1. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Cho tam giác OIM vuông tại I có OI = 3 và IM = 4. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành hình nón có độ dài đường sinh bằng
Trong không gian Oxyz, cho điểm A(0; -3; 2) và mặt phẳng (P): 2x - y + 3z + 5 = 0. Mặt phẳng đi qua A và song song với (P) có phương trình là
Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình:
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 2 - 7i có tọa độ là
Cho hình trụ có chiều cao h = 1 và bán kính r = 2. Diện tích xung quanh của hình trụ đã cho bằng
Biết F (x) và G (x) là hai nguyên hàm của hàm số f (x) trên ℝ và . Gọi S là diện tích hình phẳng giới hạn bỡi các đường y = F (x), y = G (x), x = 0 và x = 5. Khi S = 20 thì a bằng?