Trong các khẳng định sau, khẳng định nào là mệnh đề, khẳng định nào là mệnh đề chứa biến?
a) 3 + 2 > 5;
b) 1 – 2x = 0;
c) x – y = 2;
d) 1 – < 0.
+) 3 + 2 > 5 là một khẳng định có thể xác định được tính đúng sai. Do đó a) là mệnh đề.
+) 1 – 2x = 0 không xác định được tính đúng sai mà phụ thuộc vào giá trị của biến x. Do đó b) là mệnh đề chứa biến.
+) x – y = 2 không xác định được tính đúng sai mà phụ thuộc vào giá trị của biến x và y. Do đó c) là mệnh đề chứa biến.
+) 1 – < 0 là một khẳng định có thể xác định được tính đúng sai. Do đó d) là mệnh đề.
Vậy các mệnh đề là a), d) và các mệnh đề chứa biến là b), c).
Phương pháp giải:
Mệnh đề
- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.
- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.
Chú ý:
- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.
- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.
- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.
Mệnh đề chứa biến
- Mệnh đề chứa biến là một câu khẳng định chứa biến nhận giá trị trong một tập D nào đó mà với mỗi giá trị của biến thuộc vào D ta được một mệnh đề.
- Ta thường kí hiệu mệnh đề chứa biến n là P(n); mệnh đề chứa biến x, y là P(x, y), ….
Tham khảo thêm một số tài liệu liên quan:
Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”;
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”;
R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu ∀, ∃ để viết lại các mệnh đề đã cho.
Cho các định lí:
P: “Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau”;
Q: “Nếu a < b thì a + c < b + c” (a, b, c ).
a) Chỉ ra giả thiết và kết luận của mỗi định lí;
b) Phát biểu lại mỗi định lí đã cho, sử dụng thuật ngữ “điều kiện cần” hoặc “điều kiện đủ”.
c) Mệnh đề đảo của mỗi định lí đó có là định lí không?Trong các câu sau, câu nào là mệnh đề?
a) là số vô tỉ;
b) ;
c) 100 tỉ là số lớn nhất;
d) Trời hôm nay đẹp quá!
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a)
b)
c)
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình vuông”;
Q: “Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
a) Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó.
b) Hai mệnh đề P và Q có tương đương không? Nếu có, sử dụng thuật “điều kiện cần và đủ” hoặc “khi và chỉ khi” để phát biểu định lí P ⇔ Q.
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”;
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường”.
a) Phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề P ⇒ Q.
Sử dụng kí hiệu để viết các mệnh đề sau:
a) Mọi số thực cộng với số đối của nó đều bằng 0;
b) Có một số tự nhiên mà bình phương bằng 9.
Xét tính đúng, sai và viết mệnh đề phủ định của các mệnh đề sau đây:
a) , x + 3 = 0;
b) , x2 + 1 ≥ 2x;
c)
Sử dụng thuật ngữ “điều kiện cần và đủ”, phát biểu các định lí sau:
a) Một phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương;
b) Một hình bình hành là hình thoi thì nó có hai đường chéo vuông góc với nhau và ngược lại.
Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.
a) Paris là thủ đô của nước Anh;
b) 23 là số nguyên tố;
c) 2 021 chia hết cho 3;
d) Phương trình x2 – 3x + 4 = 0 vô nghiệm.
Xét hai mệnh đề:
P: “Hai tam giác ABC và A’B’C’ bằng nhau”;
Q: “Hai tam giác ABC và A’B’C’ có diện tích bằng nhau”.
a) Phát biểu mệnh đề P ⇒ Q.
b) Mệnh đề P ⇒ Q có phải là một định lí không? Nếu có, sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí này theo hai cách khác nhau.
Xét tính đúng sai của các mệnh đề sau:
(1) Với mọi số tự nhiên x, là số vô tỉ;
(2) Bình phương mọi số thực đều không âm;
(3) Có số nguyên cộng với chính nó bằng 0;
(4) Có số tự nhiên n sao cho 2n – 1 = 0.
Xét hai mệnh đề dạng P ⇒ Q sau:
“Nếu ABC là tam giác đều thì nó có hai góc bằng 600”
“Nếu a = 2 thì a2 – 4 = 0”.
a) Chỉ ra P, Q và xét tính đúng sai của mỗi mệnh đề trên.
b) Với mỗi mệnh đề đã cho, phát biểu mệnh đề Q ⇒ P và xét tính đúng sai của nó.
Xét tính đúng sai của các mệnh đề sau và phát biểu mệnh đề phủ định của chúng.
a) 2 020 chia hết cho 3;
b) π < 3,15;
c) Nước ta hiện nay có 5 thành phố trực thuộc Trung ương;
d) Tam giác có hai góc bằng 450 là tam giác vuông cân.