Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 32 , uv = 231
S = 32; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.
Ta có: Δ = (-32)2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.
x2 + 7x + 12 = 0
Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.
x2 – 7x + 12 = 0;
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
x2 – 49x – 50 = 0
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = -8, uv = -105
Cho phương trình 2x2 – 5x + 3 = 0.
Xác định các hệ số a, b, c rồi tính a + b + c.
Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (...):
2x2 – 17x + 1 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
Cho phương trình 3x2 + 7x + 4 = 0.
Xác định các hệ số a, b, c rồi tính a - b + c.
Cho phương trình 2x2 – 5x + 3 = 0.
Dùng định lý Vi-ét để tìm x2.
Cho phương trình 3x2 + 7x + 4 = 0.
Chứng tỏ rằng x1 = -1 là một nghiệm của phương trình.
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
7x2 + 500x – 507 = 0
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
35x2 – 37x + 2 = 0