Một chiếc máy quay phim ở đài truyền hình được đặt trên một giá đỡ ba chân với điểm đặt P(0; 0; 4) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là Q1(0; – 1; 0), Q2 , Q3 (Hình 35). Biết rằng trọng lượng của máy quay là 360 N.
Làm thế nào để tìm được tọa độ của các lực tác dụng lên giá đỡ?
Sau bài học này, ta giải quyết được bài toán trên như sau:
Theo giả thiết, ta có các điểm P(0; 0; 4), Q1(0; – 1; 0), Q2 , Q3 .
Suy ra hay ;
hay ;
hay .
Suy ra . Do đó, .
Vì vậy, tồn tại hằng số c ≠ 0 sao cho:
;
;
.
Suy ra .
Mặt khác, ta có: , trong đó là trọng lực tác dụng lên máy quay. Suy ra – 12c = – 360, tức là c = 30.
Vậy .
Lý thuyết Biểu thức toạ độ của các phép toán vectơ
1. Biểu thức tọa độ của tổng, hiệu hai vecto và tích của một số với một vecto
Trong không gian Oxyz, cho hai vecto và . Ta có:
|
2. Biểu thức tọa độ của tích vô hướng
Trong không gian Oxyz, tích vô hướng của hai vecto và được xác định bởi công thức |
Bài tập liên quan:
Cho hình hộp ABCD.A'B'C'D', biết A(1; 0; 1), B(2; 1; 2), D(1; – 1; 1), C'(4; 5; – 5). Hãy chỉ ra tọa độ của một vectơ khác vuông góc với cả hai vectơ trong mỗi trường hợp sau:
a) và ;
Cách giải:
a) Ta có , ,
Vì ABCD.A'B'C'D' là hình hộp nên ABCD là hình bình hành, do đó
.
Ta có .
Vì ABCD.A'B'C'D' là hình hộp nên .
Ta có .
Chọn , vectơ vuông góc với cả hai vectơ và .
Tham khảo thêm một số tài liệu liên quan:
Lý thuyết Biểu thức toạ độ của các phép toán vectơ (Cánh diều) | Lý thuyết Toán 12
Giải SGK Toán 12 Bài 3 (Cánh diều): Biểu thức toạ độ của các phép toán vectơ
Trong không gian với hệ tọa độ Oxyz, cho A(– 2; 3; 0), B(4; 0; 5), C(0; 2; – 3).
a) Chứng minh rằng ba điểm A, B, C không thẳng hàng.
Hãy biểu diễn các vectơ theo ba vectơ đơn vị và tính tích vô hướng .
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ và . Hãy chỉ ra tọa độ của một vectơ khác vuông góc với cả hai vectơ và .
b) Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có trọng tâm G.
Biểu diễn vectơ theo hai vectơ , , .
Tính tọa độ của điểm G theo tọa độ của các điểm A(xA; yA; zA), B(xB; yB; zB), C(xC; yC; zC).
Cho ba điểm A(0; – 1; 1), B(1; 0; 5), G(1; 2; 0).
a) Chứng minh rằng ba điểm A, B, G không thẳng hàng.
b) Tìm tọa độ điểm C sao cho G là trọng tâm của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(2; – 1; 1), B(1; – 1; 2) và C(3; 0; 2). Chứng minh rằng tam giác ABC vuông tại A.
a) Cho hình lập phương ABCD.A'B'C'D' có A(0; 0; 0), B(1; 0; 0), D(0; 1; 0), C'(1; 1; 1). Hãy chỉ ra tọa độ của một vectơ vuông góc với cả hai vectơ và .
a) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(xA; yA; zA) và B(xB; yB; zB). Gọi M(xM; yM; zM) là trung điểm của đoạn thẳng AB.
Biểu diễn vectơ theo hai vectơ và .
Tính tọa độ của điểm M theo tọa độ của các điểm A(xA; yA; zA) và B(xB; yB; zB).
Cho hình hộp ABCD.A'B'C'D', biết A(1; 0; 1), B(2; 1; 2), D(1; – 1; 1), C'(4; 5; – 5). Hãy chỉ ra tọa độ của một vectơ khác vuông góc với cả hai vectơ trong mỗi trường hợp sau:
a) và ;
b) Cho hai vectơ và không cùng phương.
Xét vectơ .
Tính .
Vectơ có vuông góc với cả hai vectơ và hay không?
Trong không gian với hệ tọa độ Oxyz, cho . Hãy chỉ ra tọa độ của một vectơ khác vuông góc với cả hai vectơ và .
Trong không gian với hệ tọa độ Oxyz, cho và . Góc giữa hai vectơ và bằng:
A. 60°.
B. 120°.
C. 150°.
D. 30°.
Trong không gian với hệ tọa độ Oxyz, cho và . Tọa độ của vectơ là:
A. (1; – 2; 1).
B. (5; 4; – 3).
C. (– 1; 2; – 1).
D. (– 1; 2; – 3).