Kiểm tra rằng cặp số (x; y) = (2; -1) vừa là nghiệm của phương trình thứ nhất, vừa là nghiệm của phương trình thứ hai.
Thay x = 2 , y = -1 vào phương trình 2x + y = 3 ta được:
Vậy (2;-1) là nghiệm của phương trình 2x+y=3
- Thay x = 2, y = -1 vào phương trình x – 2y = 4 ta được:
Vậy (2;-1) là nghiệm của phương trình x – 2y = 4
Vậy cặp số (x; y) = (2; -1) vừa là nghiệm của phương trình thứ nhất, vừa là nghiệm của phương trình thứ hai.
Cho hai phương trình 2x + y = 4 và 3x + 2y = 5.
a) Tìm nghiệm tổng quát của mỗi phương trình trên.
b) Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trong cùng một hệ trục tọa độ, rồi xác định nghiệm chung của chúng.
Tìm từ thích hợp để điền vào chỗ trống (…) trong câu sau:
Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ của điểm M là một … của phương trình ax + by = c.
Cho các hệ phương trình sau:
Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.
Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
Nếu tìm thấy hai nghiệm phân biệt của một hệ hai phương trình bậc nhất hai ẩn (nghĩa là hai nghiệm được biểu diễn bởi hai điểm phân biệt) thì ta có thể nói gì về số nghiệm của hệ phương trình đó? Vì sao?
Đố:
Bạn Nga nhận xét: Hai hệ phương trình bậc nhất hai ẩn vô nghiệm thì luôn tương đương với nhau.
Bạn Phương khẳng định: Hai hệ phương trình bậc nhất hai ẩn cùng có vô số nghiệm thì cũng luôn tương đương với nhau.
Theo em, các ý kiến đó đúng hay sai? Vì sao? (Có thể cho một ví dụ hoặc minh họa bằng đồ thị).