Khẳng định nào sau đây là đúng?
A. sinα = sin( 180° – α );
B. cosα = cos( 180° – α );
C. tanα = tan( 180° – α );
D. cotα = cot( 180° – α );
Lời giải
Đáp án đúng là A
Ta có sin của hai góc bù nhau thì bằng nhau. Côsin, tan và côtan của hai góc bù nhau thì đối nhau. Vậy khẳng định đúng là A.
Tam giác ABC có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Trong các khẳng định sau đây, khẳng định nào sai?
A. cos45° = sin45°;
B. cos45° = sin135°;
C. cos30° = sin120°;
D. sin60° = cos120°.
Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?
A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;
B. Nếu b2 + c2 – a2 > 0 thì góc A tù;
C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;
D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.
Cho tam giác ABC vuông cân tại A có AB = AC = 30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC là:
A. 50 cm2;
B. 50\(\sqrt 2 \) cm2;\(\)
C. 75 cm2;
D. 15\(\sqrt {105} \) cm2.
Cho \(\widehat {{\rm{xOy}}}\) = 30°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:
A. 1,5;
B. \(\sqrt 3 \);
C. \(2\sqrt 2 \);
D. 2.
Trong các đẳng thức sau đây, đẳng thức nào là đúng?
A. sin150° = \(\frac{{ - \sqrt 3 }}{2}\);
B. cos150° = \(\frac{{\sqrt 3 }}{2}\);
C. tan150° = \(\frac{{ - 1}}{{\sqrt 3 }}\);
D. cot150° = \(\sqrt 3 \).
Cho tam giác ABC có AB = 4 cm, BC = 7 cm, CA = 9 cm. Giá trị cosA là:
A. \(\frac{2}{3}\);
B. \(\frac{1}{3}\);
C. \(\frac{{ - 2}}{3}\);
D. \(\frac{1}{2}\).
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64cm2. Giá trị sinA là:
A. \(\frac{{\sqrt 3 }}{2}\);
B. \(\frac{3}{8}\);
C. \(\frac{4}{5}\);
D. \(\frac{8}{9}\).
Cho tam giác ABC không vuông. Chứng minh rằng:
\[\frac{{\tan {\rm{A}}}}{{\tan {\rm{B}}}} = \frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{c}}^2} + {{\rm{b}}^2} - {{\rm{a}}^2}}}\].