Lời giải
Ta có hình vẽ sau:
Ta có: \(\widehat {{\rm{BPA}}}\)= 40°, \(\widehat {{\rm{BQA}}}\) = 52°, \(\widehat {{\rm{BAP}}}\)= 90°, PQ = 50 m.
\(\widehat {{\rm{BQP}}}\) là góc kề bù với \(\widehat {{\rm{BQA}}}\) ⇒ \(\widehat {{\rm{BQP}}}\) = 180° – 52° = 128°
Xét tam giác PBQ: \(\widehat {{\rm{PBQ}}}\)+ \(\widehat {{\rm{BQP}}}\)+ \(\widehat {{\rm{BPQ}}}\)= 180°
⇒ \(\widehat {{\rm{PBQ}}}\)= 180° – 128° – 40° = 12°.
Áp dụng định lí sin cho tam giác PBQ ta có:
\(\frac{{{\rm{PQ}}}}{{{\rm{sinB}}}}{\rm{ = }}\frac{{{\rm{BQ}}}}{{{\rm{sinP}}}}\) = \(\frac{{50}}{{\sin 12^\circ }}\) ⇒ BQ = \(\frac{{50}}{{\sin 12^\circ }}\). sinP = \(\frac{{50}}{{\sin 12^\circ }}\).sin40° ≈ 154,58 m.
Xét tam giác ABQ vuông tại A: AB = BQ. sin52° = 154,58. sin52° ≈ 121,81 m.
Vậy chiều cao của tháp hải đăng khoảng 121,81 m.
Khẳng định nào sau đây là đúng?
A. sinα = sin( 180° – α );
B. cosα = cos( 180° – α );
C. tanα = tan( 180° – α );
D. cotα = cot( 180° – α );
Tam giác ABC có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Trong các khẳng định sau đây, khẳng định nào sai?
A. cos45° = sin45°;
B. cos45° = sin135°;
C. cos30° = sin120°;
D. sin60° = cos120°.
Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?
A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;
B. Nếu b2 + c2 – a2 > 0 thì góc A tù;
C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;
D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.
Cho tam giác ABC vuông cân tại A có AB = AC = 30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC là:
A. 50 cm2;
B. 50\(\sqrt 2 \) cm2;\(\)
C. 75 cm2;
D. 15\(\sqrt {105} \) cm2.
Cho \(\widehat {{\rm{xOy}}}\) = 30°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:
A. 1,5;
B. \(\sqrt 3 \);
C. \(2\sqrt 2 \);
D. 2.
Trong các đẳng thức sau đây, đẳng thức nào là đúng?
A. sin150° = \(\frac{{ - \sqrt 3 }}{2}\);
B. cos150° = \(\frac{{\sqrt 3 }}{2}\);
C. tan150° = \(\frac{{ - 1}}{{\sqrt 3 }}\);
D. cot150° = \(\sqrt 3 \).
Cho tam giác ABC có AB = 4 cm, BC = 7 cm, CA = 9 cm. Giá trị cosA là:
A. \(\frac{2}{3}\);
B. \(\frac{1}{3}\);
C. \(\frac{{ - 2}}{3}\);
D. \(\frac{1}{2}\).
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64cm2. Giá trị sinA là:
A. \(\frac{{\sqrt 3 }}{2}\);
B. \(\frac{3}{8}\);
C. \(\frac{4}{5}\);
D. \(\frac{8}{9}\).
Cho tam giác ABC không vuông. Chứng minh rằng:
\[\frac{{\tan {\rm{A}}}}{{\tan {\rm{B}}}} = \frac{{{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}}}{{{{\rm{c}}^2} + {{\rm{b}}^2} - {{\rm{a}}^2}}}\].