Cho tứ giác ABCD như Hình 12.
a) Tính độ dài hai đường chéo và cạnh còn lại của tứ giác ABCD.
b) Cho biết góc B bằng 53°. Tìm số đo góc C.
a) Áp dụng định lý Pythagore trong tam giác ABD vuông tại A có:
BD2 = AD2 + AB2 = 42 + 102 = 116
Suy ra
Áp dụng định lý Pythagore trong tam giác ADC vuông tại D có:
AC2 = AD2 + DC2 = 42 + 72 = 65
Suy ra
Kẻ CH ⊥ AB (H ∈ AB), mà AD ⊥ AB nên CH // AD
Ta cũng có DC ⊥ AD và AB ⊥ AD nên DC // AB
Suy ra (các cặp góc so le trong)
Xét ∆ADC và ∆CHA có:
cạnh AC chung,
Do đó ∆ADC = ∆CHA (g.c.g)
Suy ra: CD = AH, AD = CH
Mà CD = 7, AD = 4 nên AH = 7, CH = 4
Ta có: BH = AB ‒ AH = 10 ‒ 7 =3.
Áp dụng định lý Pythagore trong tam giác CBH vuông tại H có:
BC2 = CH2 + BH2 = 32 + 42 = 25
Suy ra
b) Vì tổng số đo các góc của một tứ giác bằng 360° nên trong tứ giác ABCD có:
Suy ra
Cho tứ giác ABCD có AB = AD, CB = CD,
a) Chứng minh AC là đường trung trực của BD.
b) Tính số đo góc B và góc D.
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau tại I. Cho biết BC = 15 cm, CD = 24 cm và AD = 20 cm. Tính độ dài AB.
Cho tứ giác ABCD có Các tia phân giác của góc A và góc B cắt nhau tại I. Biết Tính số đo góc C và góc D.
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác đó.
Bạn Hùng muốn làm một cái diều có dạng hình tứ giác KITE như Hình 13. Cho biết IK = IT, EK = ET. Tìm số đo các góc còn lại của tứ giác KITE.