Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D. Vì sao AD là đường kính của đường tròn (O)?
Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.
Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.
Suy ra AD là đường kính của (O).
Cho tam giác đều ABC cạnh bằng 3cm. Bán kính của đường tròn ngoại tiếp tam giác ABC bằng:
A. 2 cm
B. 2cm
C. cm
D. cm
Tam giác ABC cân tại A, BC = 12cm, đường cao AH = 4cm. Tính bán kính của đường tròn ngoại tiếp tam giác ABC.
Cho hình vuông ABCD, O là giao điểm của hai đường chéo, OA = cm. Vẽ đường tròn tâm A bán kính 2cm. Trong năm điểm A, B, C, D, O, điểm nào nằm trên đường tròn? Điểm nào nằm trong đường tròn? Điểm nào nằm ngoài đường tròn?
Cho hình vuông ABCD. Chứng minh rằng bốn đỉnh của hình vuông cùng nằm trên một đường tròn. Hãy chỉ ra vị trí của tâm đường tròn đó
Cho hình chữ nhật ABCD có AD = 12cm, CD = 16cm. Chứng minh rằng bốn điểm ABCD cùng thuộc một đường tròn.Tính bán kính của đường tròn đó.
Cho hình thoi ABCD có A = . Gọi O là giao điểm của hai đường chéo; E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Chứng minh rằng sáu điểm E, B, F, G, D, H thuộc cùng một đường tròn.
Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm A(1; -1), B(- ; ) và C(1; 2) đối với đường tròn (O; 2)
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
Gọi K là giao điểm của BE và CD. Chứng minh rằng AK vuông góc với BC.
Cho hình vuông ABCD. Tính bán kính của đường tròn đó, biết cạnh của hình vuông bằng 2cm.
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
Chứng minh rằng CD ⊥ AB, BE ⊥ AC
Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC. Gọi M, N, P, Q theo thứ tự là trung điểm của cạnh DE, DC, BC, BE. Chứng minh rằng bốn điểm M, N, P, Q thuộc cùng một đường tròn.
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D. Cho BC = 24cm, AC = 20cm. Tính đường cao AH và bán kính đường tròn (O)
Cho góc nhọn xOy và hai điểm D, E thuộc tia Oy. Dựng đường tròn tâm M đi qua D và E sao cho tâm M nằm trên tia Ox.
Xét tính đúng – sai của mỗi khẳng định sau:
Cho tam giác ABC nội tiếp đường tròn (O).
a) Nếu BC là đường kính của đường tròn thì (BAC) =
b) Nếu AB = AC thì AO vuông góc với BC.
c) Nếu tam giác ABC không vuông thì điểm O nằm bên trong tam giác đó.