Câu hỏi:

29/11/2024 5.8 K

Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?

A.\(m >4.\)

Đáp án chính xác

B.\(0 < m \le 2.\)

C.\(2 < m \le 4.\)

D. \(m \le 0.\)

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Ta có: \(y' = \frac{{1 - m}}{{{{\left( {x + 1} \right)}^2}}}\)

TH1: \(m = 1 \Rightarrow y = 1\) loại

TH2: \(m >1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{{16}}{3} \Leftrightarrow m = 5\) (thỏa mãn)

TH3: \(m < 1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{2 + m}}{3} + \frac{{1 + m}}{2} = \frac{{16}}{3} \Leftrightarrow m = 5\) (loại)

Vậy \(m = 5\) thỏa mãn.

Phương pháp giải:

Tìm GTLN, GTNN của hàm số trên 1 đoạn

Phương pháp: Cho hàm số y = f(x) xác định và liên tục trên [a,b] .

Bước 1. Tính đạo hàm f'(x) .

Bước 2. Tìm tất cả các nghiệm xi ∈ [a,b] của phương trình f'(x) = 0 và tất cả các điểm αi ∈ [a,b] làm cho f'(x) không xác định.

Bước 3. Tính f(a), f(b), f(xi), f(αi).

Bước 4. So sánh các giá trị tính được và kết luận Các dạng bài tập về giá trị lớn nhất, giá trị nhỏ nhất của hàm số và cách giải

Lưu ý: 

- Đối với bài toán tìm GTLN, GTNN trên khoảng, nửa đoạn làm tương tự. 

- Trong trường hợp trên khoảng đó không tồn tại giá trị f’(x) = 0 hoặc không xác định thì kết luận không tìm được GTLN, GTNN trên khoảng đó.

- Đối với bài toán xét trên cả tập xác định, tham khảo phần A.5 Lý thuyết.

Tham khảo thêm một số tài liệu liên quan:

Đề thi thử Toán 2024 phát triển từ đề tham khảo

Đề tham khảo tốt nghiệp THPT năm 2023 tất cả các môn học

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là (ảnh 1)

Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là

Xem đáp án » 22/07/2024 5.4 K

Câu 2:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên.

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên.Trong các giá trị \(a,b,c,d\) có bao nhiêu giá trị âm? (ảnh 1)

Trong các giá trị \(a,b,c,d\) có bao nhiêu giá trị âm?

Xem đáp án » 23/07/2024 2.9 K

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:\(x\)\( - \infty \)                 1                      2                      3                     4              \(  (ảnh 1)

Biết \(f\left( 2 \right) + f\left( 6 \right) = 2f\left( 3 \right).\) Tập nghiệm của phương trình \(f\left( {{x^2} + 1} \right) = f\left( 3 \right)\) có số phần tử bằng

Xem đáp án » 19/07/2024 1.5 K

Câu 4:

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình vẽ.Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị? (ảnh 1)

Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?

Xem đáp án » 13/07/2024 697

Câu 5:

Cho khối tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3cm,OB = 4cm,OC = 10cm.\) Thể tích khối tứ diện \(OABC\) bằng

Xem đáp án » 13/07/2024 572

Câu 6:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? (ảnh 1)

Xem đáp án » 23/07/2024 386

Câu 7:

Với \(m\) là một tham số thực thì đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng \(y = m\) có nhiều nhất bao nhiêu giao điểm?

Xem đáp án » 23/07/2024 378

Câu 8:

Có bao nhiêu loại khối đa diện đều?

Xem đáp án » 22/07/2024 344

Câu 9:

Tổng tất cả các giá trị nguyên của \(m\) để đồ thị hàm số \(y = \frac{{20 + \sqrt {6x - {x^2}} }}{{\sqrt {{x^2} - 8x + 2m} }}\) có đúng hai đường tiệm cận đứng là

B. 15.

Xem đáp án » 15/07/2024 317

Câu 10:

Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng

Xem đáp án » 16/07/2024 304

Câu 11:

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(ABC,SA = 1\) và đáy \(ABC\) là tam giác đều với độ dài cạnh bằng 2. Tính góc giữa mặt phẳng \(SBC\) và mặt phẳng \(ABC.\)

Xem đáp án » 05/07/2024 299

Câu 12:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x)=(3x)(103x)2(x2)2 với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right) + \frac{1}{6}{\left( {{x^2} - 1} \right)^3}\) đồng biến trên khoảng nào trong các khoảng sau?

Xem đáp án » 20/07/2024 297

Câu 13:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng

Xem đáp án » 18/07/2024 280

Câu 14:

Cho khối chóp tam giác đều có cạnh đáy bằng 2 và chiều cao \(h = 12.\) Thể tích của khối chóp đã cho bằng

Xem đáp án » 07/07/2024 270

Câu hỏi mới nhất

Xem thêm »
Xem thêm »