Với giải Câu 25.1 trang 77 SBT Tin học 11 Kết nối tri thức chi tiết trong Bài 25: Thực hành xác định độ phức tạp thời gian thuật toán giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Tin học 11. Mời các bạn đón xem:
Sách bài tập Tin học 11 Bài 25: Thực hành xác định độ phức tạp thời gian thuật toán
Câu 25.1 trang 77 SBT Tin học 11: Tính độ phức tạp của các hàm thời gian sau:
a) T(n) = n + 2log n.
c) T(n) = 2100
b) T(n) = n2 + 3nlogn + 2n.
d) T(n) = 2n+1.
Lời giải:
a) T(n) = n + 2log n ≤ 3n với n ≥ 1. Vậy T(n) = O(n).
b) T(n) = n2 + 3nlogn +2n ≤ 6n với n ≥ 1. Vậy T(n) = O(n).
c) T(n) = O(1), độ phức tạp hằng số.
d) T(n) = 2n+1 = 2.2" = O(2").
Xem thêm lời giải Sách bài tập Tin học 11 Kết nối tri thức hay, chi tiết khác:
Câu 25.1 trang 77 SBT Tin học 11: Tính độ phức tạp của các hàm thời gian sau:....
Câu 25.5 trang 78 SBT Tin học 11: Xác định độ phức tạp thời gian của hàm sau:....
Câu 25.7 trang 78 SBT Tin học 11: Giả sử f(n) = . Chứng minh rằng f(n) = O(n)