Tailieumoi.vn xin giới thiệu đề thi học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 sở GD&ĐT Bắc Giang có lời giải chi tiết. Hi vọng với bộ tài liệu này các em ôn luyện, củng cố kiến thức, rèn luyện kĩ năng làm bài thật tốt để bước bài kì thi HSG sắp tới.
Đề thi HSG Toán 9 cấp tỉnh năm 2022 - 2023 sở GD&ĐT Bắc Giang
Một số câu hỏi có trong đề thi:
+ Cho đường tròn tâm O bán kính R có dây cung AB = 6. Biết o AOB 120 (như hình vẽ). Diện tích S của phần hình tròn giới hạn bởi cung nhỏ AB và dây cung AB bằng?
+ Cho hai đường tròn (O; R) và (O’; R’) (với R > R’) cắt nhau tại hai điểm phân biệt A và B. Đường thẳng d thay đổi qua A cắt hai đường tròn (O; R) và (O’; R’) lần lượt tại các điểm M, N (M, N khác A) và A thuộc đoạn MN. Các tiếp tuyến với đường tròn (O; R) tại M và đường tròn (O; R’) tại N cắt nhau tại K. 1. Chứng minh tứ giác MBNK là tứ giác nội tiếp. 2. Gọi P, Q, H tương ứng là hình chiếu vuông góc của điểm B lên các đường thẳng KM, KN và MN. Chứng minh rằng ba điểm P, H, Q thẳng hàng và đường thẳng PQ luôn tiếp xúc với một đường tròn cố định. 3. Chứng minh rằng PH = QH khi các đường phân giác trong của góc MKN và MBN cắt nhau tại một điểm nằm trên đường thẳng MN.
+ Trong mặt phẳng tọa độ Oxy, gọi M x y là hình chiếu vuông góc của điểm O lên đường thẳng d: y mx m 2 (với m là tham số). Khi độ dài đoạn thẳng OM đạt giá trị lớn nhất tính P x 2y.
Để xem đầy đủ đề thi và lời giải chi tiết mời bạn đọc tải tài liệu về.