Lời giải:
Biểu thức tan 2x có nghĩa khi \(2x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\)\( \Leftrightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,k \in \mathbb{Z}\).
Suy ra hàm số y = tan 2x có tập xác định là D = \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Với mọi số thực x, ta có:
+) \(x - \frac{\pi }{2} \in D,\,x + \frac{\pi }{2} \in D\);
+) \(\tan 2\left( {x + \frac{\pi }{2}} \right) = \tan \left( {2x + \pi } \right) = \tan 2x\).
Vậy y = tan 2x là hàm số tuần hoàn với chu kì \(T = \frac{\pi }{2}\).
Phương pháp giải
+ Hàm số y= f(x) xác định trên tập hợp D được gọi là hàm số tuần hoàn nếu có số T ≠ 0 sao cho với mọi x ∈ D ta có x+T ∈ D;x-T ∈ D và f(x+T)=f(x).
Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được goi là một hàm số tuần hoàn với chu kì T.
+ Cách tìm chu kì của hàm số lượng giác ( nếu có ):
Hàm số y = k.sin(ax+b) có chu kì là T= 2π/|a|
Hàm số y= k.cos(ax+ b) có chu kì là T= 2π/|a|
Hàm số y= k.tan( ax+ b) có chu kì là T= π/|a|
Hàm số y= k.cot (ax+ b ) có chu kì là: T= π/|a|
Hàm số y= f(x) có chu kì T1; hàm số T2 có chu kì T2 thì chu kì của hàm số y= a.f(x)+ b.g(x) là T = bội chung nhỏ nhất của T1 và T2
Xem thêm một số kiến thức liên quan:
Chuyên đề Hàm số lượng giác và phương trình lượng giác hay, chọn lọc
Giả sử vận tốc v (tính bằng lít/giây) của luồng khí trong một chu kì hô hấp (tức là thời gian từ lúc bắt đầu của một nhịp thở đến khi bắt đầu của nhịp thở tiếp theo) của một người nào đó ở trạng thái nghỉ ngơi được cho bởi công thức
\(v = 0,85\sin \frac{{\pi t}}{3}\),
trong đó t là thời gian (tính bằng giây). Hãy tìm thời gian của một chu kì hô hấp đầy đủ và số chu kì hô hấp trong một phút của người đó.
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Xét tính chẵn lẻ của các hàm số sau:
a) y = sin 2x + tan 2x;
b) y = cos x + sin2 x;
c) y = sin x cos 2x;
d) y = sin x + cos x.
Trong Vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), ωt + φ là pha của dao động tại thời điểm t và φ ∈ [–π; π] là pha ban đầu của dao động. Dao động điều hòa này có chu kì \(T = \frac{{2\pi }}{\omega }\) (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).
Giả sử một vật dao động điều hòa theo phương trình x(t) = – 5cos 4πt (cm).
a) Hãy xác định biên độ và pha ban đầu của dao động.
b) Tính pha của dao động tại thời điểm t = 2 (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?
Xét tình huống mở đầu.
a) Giải bài toán ở tình huống mở đầu.
b) Biết rằng quá trình hít vào xảy ra khi v > 0 và quá trình thở ra xảy ra khi v < 0.
Trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm nào thì người đó hít vào? người đó thở ra?
Cho hàm số y = cot x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).
x |
\(\frac{\pi }{6}\) |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{3}\) |
\(\frac{\pi }{2}\) |
\(\frac{{2\pi }}{3}\) |
\(\frac{{3\pi }}{4}\) |
\(\frac{{5\pi }}{6}\) |
y = cot x |
? |
? |
? |
? |
? |
? |
? |
Bằng cách lấy nhiều điểm M(x; cot x) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).
c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.
Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.
So sánh:
a) sin(x + 2π) và sin x;
b) cos(x + 2π) và cos x;
c) tan(x + π) và tan x;
d) cot(x + π) và cot x.
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Cho hàm số y = sin x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = sin x trên đoạn [– π; π] bằng cách tính giá trị của sin x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của sin x với những x âm.
x |
– π |
\( - \frac{{3\pi }}{4}\) |
\( - \frac{\pi }{2}\) |
\( - \frac{\pi }{4}\) |
0 |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{2}\) |
\(\frac{{3\pi }}{4}\) |
π |
y = sin x |
? |
? |
? |
? |
? |
? |
? |
? |
? |
Bằng cách lấy nhiều điểm M(x; sin x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = sin x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = sin x như hình dưới đây.
Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = sin x.
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).