Trong không gian cho ba mặt phẳng phân biệt (P), (Q), (R). Những mệnh đề nào sau đây là đúng?
a) Nếu (P) chứa một đường thẳng song song với (Q) thì (P) song song với (Q).
b) Nếu (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q).
c) Nếu (P) và (Q) song song với (R) thì (P) song song với (Q).
d) Nếu (P) và (Q) cắt (R) thì (P) và (Q) song song với nhau.
Lời giải:
a) Mệnh đề a) là mệnh đề sai vì hai mặt phẳng (P) và (Q) có thể cắt nhau theo giao tuyến b song song với đường thẳng a nằm trong (P).
b) Mệnh đề b) là mệnh đề sai vì thiếu điều kiện hai đường thẳng đó phải cắt nhau.
c) Mệnh đề c) là mệnh đề đúng vì (P) và (Q) là hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba là mặt phẳng (R) thì (P) và (Q) song song với nhau.
d) Mệnh đề d) là mệnh đề sai vì (P) và (Q) cắt (R) thì (P) và (Q) có thể cắt nhau.
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'.
a) Chứng minh rằng tứ giác AGG'A' là hình bình hành.
b) Chứng minh rằng AGC.A'G'C' là hình lăng trụ.
Cho mặt phẳng (α) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (β) (H.4.41).
Nếu (α) và (β) cắt nhau theo giao tuyến c thì hai đường thẳng a và c có song song với nhau hay không, hai đường thẳng b và c có song song với nhau hay không?
Cho hai mặt phẳng song song (P) và (Q). Giả sử mặt phẳng (R) cắt mặt phẳng (P) theo giao tuyến a (H.4.46).
a) Giải thích vì sao mặt phẳng (R) cắt mặt phẳng (Q).
b) Gọi b là giao tuyến của hai mặt phẳng (R) và (Q). Hai đường thẳng a và b có thể chéo nhau hay không, có thể cắt nhau hay không?