Trong hình bên dưới, tìm các cặp hình có hình dạng giống nhau. Loại phép biến hình nào có thể biến hình này thành hình kia trong mỗi cặp?
⦁ Các cặp hình có hình dạng giống nhau là:
– Các hình tròn sau có hình dạng đôi một giống nhau:
– Các hình tam giác sau có hình dạng đôi một giống nhau:
– Các hình elip sau có hình dạng đôi một giống nhau:
– Hai hình elip sau có hình dạng giống nhau:
– Hai hình tròn sau có hình dạng giống nhau:
– Hai hình tam giác sau có hình dạng giống nhau:
– Các hình vuông sau có hình dạng đôi một giống nhau:
– Hai hình chữ nhật sau có hình dạng giống nhau:
⦁ Ta thấy trong các cặp hình vừa tìm được, có cặp hình có kích thước bằng nhau (các cặp hình tam giác màu vàng, cặp hình elip màu xanh lá, cặp hình vuông màu xanh biển, cặp hình chữ nhật màu tím) và có cặp hình có kích thước khác nhau (các cặp hình tròn màu xanh, các cặp hình tam giác màu vàng, các cặp hình elip màu xanh lá, cặp hình elip màu cam, cặp hình tròn màu hồng, cặp hình tam giác màu xanh dương, các cặp hình vuông màu xanh biển).
Với các cặp hình có kích thước giống nhau, ta có thể sử dụng phép dời hình để biến hình này thành hình kia.
Với các cặp hình có kích thước khác nhau, ta có thể thực hiện liên tiếp một hoặc một vài phép dời hình đã học, sau đó thực hiện phép vị tự để biến thành hình có kích thước tỉ lệ với hình đã cho.
Vậy loại phép biến hình cần tìm là các phép dời hình và phép vị tự.
Cho hai hình vuông tùy ý ABCD và A’B’C’D’ có giao điểm hai đường chéo lần lượt là O và O’ (Hình 4).
a) Gọi A1B1C1D1 là ảnh của hình vuông ABCD qua phép tịnh tiến theo vectơ . Gọi φ là góc lượng giác (O’A1, O’A’). Tìm ảnh A2B2C2D2 của hình vuông A1B1C1D1 qua phép quay Q(O’, φ).
b) Cho biết . Tìm ảnh của hình vuông A2B2C2D2 qua phép vị tự V(O’, k).
c) Từ kết quả của câu a) và b), hãy cho biết ta có thể kết luận là hai hình vuông tùy ý luôn đồng dạng với nhau được không. Giải thích.
Cho hình chữ nhật ABCD có AC cắt BD tại I. Gọi H, K, L và J lần lượt là trung điểm của AD, BC, KC và IC. Chứng minh hình thang JLKI và hình thang IHDC đồng dạng với nhau.
Cho ∆ABC đều có cạnh bằng 2. Qua ba phép biến hình liên tiếp: Phép tịnh tiến , phép quay Q(B, 60°), phép vị tự V(A, 3), ∆ABC biến thành ∆A1B1C1. Tìm diện tích ∆A1B1C1.
Trong Hình 1, tìm hai phép biến hình để biến tam giác ABC thành tam giác A’B’C’.
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O bán kính R = 9 và cho điểm A khác O. Gọi (C’) là ảnh của (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ và phép vị tự . Tìm diện tích hình tròn (C’).
Cho trước ba số thực a, b, k. Trong mặt phẳng tọa độ Oxy, xét phép biến hình g biến điểm M(x; y) thành điểm M’(x’; y’) thỏa mãn: . Hãy chứng minh g là một phép đồng dạng.