Trong các mệnh đề sau, mệnh đề nào đúng?
Hướng dẫn giải
Đáp án đúng là: D
Phương án A: Tứ giác có 4 cạnh bằng nhau chưa chắc là hình vuông, vậy nên không thể là “điều kiện cần và đủ”, vậy đây là mệnh đề sai.
Phương án B: Tổng 2 số chia hết cho 7 thì chưa chắc 2 số đó đều chia hết cho 7 (Ví dụ 6 + 1 = 7 chia hết cho 7 nhưng 6 và 1 không chia hết cho 7), vậy khẳng định B sai.
Phương án C: Để ab > 0 thì điều kiện cần phải là a và b cùng dấu, như vậy khẳng định C sai.
Phương án D: Một số chia hết cho 9 thì suy ra số đó cũng chia hết cho 3, vậy một số nguyên dương chia hết cho 9 là điều kiện đủ để nó chia hết cho 3, do đó khẳng định D đúng.
Cho A = (2; +∞) và B = (m; +∞). Điều kiện cần và đủ của m để B là tập con của A là:
Cho hai tập hợp A = [1; 3] và B = [m; m + 1]. Tìm m để B là tập con của A.
Cho hai tập hợp A = {x ∈ ℝ| (2x – x2)(2x2 – 3x – 2) = 0} và B = {n ∈ ℕ| 3 < n2 < 30}, chọn mệnh đề đúng:
“Nếu a và b là hai số hữu tỉ thì tổng a + b cũng là số hữu tỉ”. Cách phát biểu nào sau đây diễn đạt mệnh đề trên?
Mệnh đề chứa biến: “x3 – 3x2 + 2x = 0” đúng với giá trị nào của x?
Cho A là tập hợp các tứ giác lồi, B là tập hợp các hình thang, C là tập hợp các hình bình hành, D là tập hợp các hình chữ nhật, E là tập hợp các hình thoi và F là tập hợp các hình vuông
Xét các câu sau:
(I). E ⊂ F ⊂ D ⊂ B ⊂ A.
(II). F ⊂ E ⊂ C ⊂ B ⊂ A.
(III). F ⊂ D ⊂ E ⊂ B ⊂ A.
Câu nào đúng?
Cho hai tập hợp A = {1; 2; a; b} và B = {1; x; y} với x, y khác a, b, 1, 2. Kết luận nào sau đây là đúng?
Lớp 10A của trường có 20 học sinh thích môn Toán, 18 học sinh thích môn Ngữ văn và 10 học sinh thích cả môn Toán và Ngữ văn. Hỏi lớp 10A có bao nhiêu học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ văn?
Cho các tập hợp A, B, C được minh hoạ bằng biểu đồ Ven như hình vẽ dưới đây:
Phần tô màu xám trong hình vẽ biểu diễn của tập hợp nào sau đây?
Cho 3 tập hợp E, F, G sao cho E ⊂ F, F ⊂ G và G ⊂ E. Câu nào sau đây đúng?