Lớp 10A của trường có 20 học sinh thích môn Toán, 18 học sinh thích môn Ngữ văn và 10 học sinh thích cả môn Toán và Ngữ văn. Hỏi lớp 10A có bao nhiêu học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ văn?
C. 20
D. 2
Hướng dẫn giải
Đáp án đúng là: A
Gọi A là tập hợp các học sinh của lớp 10A thích môn Toán và B là tập hợp các học sinh của lớp 10A thích môn Ngữ văn.
Số phần tử của A và B lần lượt là n(A) và n(B) nên n(A) = 20; n(B) = 18.
Ta có:
+) Tập hợp số học sinh thích cả môn Toán và Ngữ văn là A ∩ B nên n(A ∩ B) = 10.
+) Tập hợp số học sinh chơi ít nhất 1 trong 2 môn Toán và Ngữ Văn là A ∪ B.
Nên tổng số học sinh thích ít nhất một trong hai môn đó là n(A ∪ B).
Suy ra n(A ∪ B) = n(A) + n(B) ‒ n(A ∩ B) = 20 + 18 – 10 = 28.
Vậy có 28 học sinh chơi ít nhất một trong hai môn Toán và Ngữ văn.
Cho A = (2; +∞) và B = (m; +∞). Điều kiện cần và đủ của m để B là tập con của A là:
Cho hai tập hợp A = [1; 3] và B = [m; m + 1]. Tìm m để B là tập con của A.
Cho hai tập hợp A = {x ∈ ℝ| (2x – x2)(2x2 – 3x – 2) = 0} và B = {n ∈ ℕ| 3 < n2 < 30}, chọn mệnh đề đúng:
“Nếu a và b là hai số hữu tỉ thì tổng a + b cũng là số hữu tỉ”. Cách phát biểu nào sau đây diễn đạt mệnh đề trên?
Mệnh đề chứa biến: “x3 – 3x2 + 2x = 0” đúng với giá trị nào của x?
Cho A là tập hợp các tứ giác lồi, B là tập hợp các hình thang, C là tập hợp các hình bình hành, D là tập hợp các hình chữ nhật, E là tập hợp các hình thoi và F là tập hợp các hình vuông
Xét các câu sau:
(I). E ⊂ F ⊂ D ⊂ B ⊂ A.
(II). F ⊂ E ⊂ C ⊂ B ⊂ A.
(III). F ⊂ D ⊂ E ⊂ B ⊂ A.
Câu nào đúng?
Cho hai tập hợp A = {1; 2; a; b} và B = {1; x; y} với x, y khác a, b, 1, 2. Kết luận nào sau đây là đúng?
Cho các tập hợp A, B, C được minh hoạ bằng biểu đồ Ven như hình vẽ dưới đây:
Phần tô màu xám trong hình vẽ biểu diễn của tập hợp nào sau đây?
Cho 3 tập hợp E, F, G sao cho E ⊂ F, F ⊂ G và G ⊂ E. Câu nào sau đây đúng?