Tìm P biết P + 4x-12x3-3x2-4x+12=3x-3-x24-x2
A. P=xx+3
B. P=xx-3
C. P=2xx-3
D. P=x-3x
ĐK: x≠-2,2,3P=3x-3-x24-x2-4x-12x3-3x2-4x+12P=3(x2-4)(x-3)(x2-4)+x2(x-3)(x-3)(x2-4)-4x-12(x-3)(x2-4)P= x3-4x(x-3)(x-2)(x+2)P=xx-3Đáp án B
Phân thức 5x - 73x2 + 6x xác định khi:
Điền vào chỗ trống: 2x-6x+3 - ... = x+12
Kết quả của phép tính 3x-12xy - 5x-22xy là
Thực hiện phép tính sau: x3x2+1+xx2+1
Đa thức P trong đẳng thức 5(y - x)25x2 - 5xy = x - yP là
Kết quả của phép tính:
1x + 1x(x+1)+ ... + 1(x+9)(x+10) là:
Rút gọn biểu thức:
1x+2+1(x+1)(x+2)+1(x+1)(2x+1)
Đa thức thích hợp để điền vào chỗ trống trong đẳng thức
x3 - 8... = x2 + 2x + 43x là:
Cho Q=x2+3xx3+3x2+9x+27+3x2+9:1x-3-6xx3-3x3+9x-27
Rút gọn Q ta được:
Thực hiện phép tính:
P = 3x+15x2-4:x+5x-2 ta được:
Thực hiện phép tính sau 2x+55x2y2 + 85xy2 + 2x-1x2y2:
Biểu thức: P=x-12-x:x-1x+2.x-24-x2
có kết quả rút gọn là:
Cho P=10xx2+3x-4-2xx+4+x+11-x.
Tính P khi x = -1
Tìm biểu thức M, biết:
x+2yx3-8y3.M=5x2+10xyx2+2x+4y2
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Tia phân giác của \[\widehat {ABC}\] cắt AC tại D.
Tia phân giác của \[\widehat {ACB}\]cắt BD ở I. Gọi M là trung điểm BC. Chứng minh \[\widehat {BIM}\]= 90°.
Cho Hình 10, tính độ dài x, y.
Để đo khoảng cách giữa hai điểm A và B bị ngăn cách bởi một hồ nước, người ta đóng các cọc tại các vị trí A, B, M, N, O như Hình 9 và đo được MN = 45 m. Tính khoảng cách AB biết M, N lần lượt là trung điểm OA, OB.
Cho tam giác ABC có I ∈ AB và K ∈ AC. Kẻ IM // BK (M ∈ AC), KN // CI (N ∈ AB). Chứng minh MN // BC.
Cho tam giác ABC có cạnh BC = 10 cm. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC lần lượt tại M và N. Tính độ dài DM và EN.
Cho hình thang ABCD (AB // CD) và DE = EC (Hình 8). Gọi O là giao điểm của AC và BD, K là giao điểm của EO và AB. Trong các khẳng định sau đây, có bao nhiêu khẳng định đúng?
(I) \[\frac{{AK}}{{EC}} = \frac{{KB}}{{DE}}\];
(II) AK = KB ;
(III) \[\frac{{AO}}{{AC}} = \frac{{AB}}{{DC}}\];
(IV) \[\frac{{AK}}{{EC}} = \frac{{OB}}{{OD}}\].
A. 1;
B. 2;
C. 3;
D. 4.
Cho tam giác ABC đều cạnh bằng 1 dm. Gọi E, F lần lượt là trung điẻm AB, AC. Chu vi hình thang EFCB bằng:
A. \[\frac{5}{2}\]dm ;
B. 3 dm ;
C. 3,5 dm ;
D. 4 dm .
Cho hình bình hành ABCD có M, N lần lượt là trung điểm BC, AD. Vẽ MP // BD (P ∈ AC) và NQ // BD (Q ∈ AC). Phát biểu nào sau đây đúng?
A. AQ = QP = PC ;
B. O là trung điểm PQ ;
C. MNPQ là hình bình hành ;
D. MNPQ là hình chữ nhật.
Cho hình vuông ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA (Hình 6). Đẳng thức nào sau đây đúng?
A. SMNPQ = \[\frac{1}{4}\]SABCD ;
B. SMNPQ = \[\frac{1}{3}\]SABCD ;
C. SMNPQ = SABCD ;
D. SMNPQ = \[\frac{1}{2}\]SABCD .
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
© 2021 Vietjack. All Rights Reserved.