Tìm các tiệm cận ngang và tiệm cận đứng của đồ thị hàm số .
Một mảnh vườn hình chữ nhật có diện tích bằng 144 m2. Biết độ dài một cạnh của mảnh vườn là x (m).
a) Viết biểu thức tính chu vi P(x) mét của mảnh vườn.
Một công ty sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là C(x) = 2x + 50 (triệu đồng).
Khi đó là chi phí sản xuất trung bình cho mỗi sản phẩm. Chứng tỏ rằng hàm số f(x) giảm và . Tính chất này nói lên điều gì?
Để loại bỏ p% một loài tảo độc khỏi một hồ nước, người ta ước tính chi phí bỏ ra là (triệu đồng), với 0 £ p < 100. Tìm tiệm cận đứng của đồ thị hàm số C(p) và nêu ý nghĩa thực tiễn của đường tiệm cận này.
b) Khi M thay đổi trên (C) sao cho khoảng cách MH dần đến 0, có nhận xét gì về tung độ của điểm M.
Hình 1.26 là đồ thị của hàm số . Sử dụng đồ thị này, hãy:
a) Viết kết quả của các giới hạn sau: .
Cho hàm số có đồ thị (C). Với x > 1, xét điểm M(x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng x = 1 (H.1.22).
a) Tính khoảng cách MH.
Đường thẳng x = 1 có phải là tiệm cận đứng của đồ thị hàm số không?
Cho hàm số có đồ thị (C). Với x > 0, xét điểm M(x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng y = 2 (H.1.19).
a) Tính khoảng cách MH.
Giả sử khối lượng còn lại của một chất phóng xạ (gam) sau t ngày phân rã được cho bởi hàm số m(t) = 15e−0,012t. Khối lượng m(t) thay đổi ra sao khi t → +∞? Điều này thể hiện trên Hình 1.18 như thế nào?