Phân tích đa thức thành nhân tử: 64x4+y4
Phân tích đa thức sau thành nhân tử: x8+98x4+1
Phân tích đa thức thành nhân tử 3x2-8x+4
Dùng phương pháp xét giá trị riêng:
M=a(b+c-a)2+b(c+a-b)2+c(a+b-c)2=a+b-cb+c-ac+a-b
Phân tích đa thức sau thành nhân tử: x8+x7+1
Phân tích đa thức thành nhân tử: 4x2-4x-3
Phân tích đa thức thành nhân tử: 4x4+81
(a+b+c)3-4(a3+b3+c3)-12abc bằng cách đổi biến: đặt a+b=m, a-b=n
Phân tích đa thức thành nhân tử: x4-6x3+12x2-14x+3
Phân tích đa thức thành nhân tử: x(x+4)(x+6)(x+10)+128
Phân tích đa thức thành nhân tử: A=x4+6x3+7x2-6x+1
Phân tích đa thức sau thành nhân tử: x3-7x-6=0 bằng nhiều cách
Phân tích đa thức sau thành nhân tử: 27x3-27x2+18x-4
Phân tích đa thức thành nhân tử: 3x3-7x2+17x-5
Phân tích đa thức sau thành nhân tử: x4+324
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Tia phân giác của \[\widehat {ABC}\] cắt AC tại D.
Tia phân giác của \[\widehat {ACB}\]cắt BD ở I. Gọi M là trung điểm BC. Chứng minh \[\widehat {BIM}\]= 90°.
Cho Hình 10, tính độ dài x, y.
Để đo khoảng cách giữa hai điểm A và B bị ngăn cách bởi một hồ nước, người ta đóng các cọc tại các vị trí A, B, M, N, O như Hình 9 và đo được MN = 45 m. Tính khoảng cách AB biết M, N lần lượt là trung điểm OA, OB.
Cho tam giác ABC có I ∈ AB và K ∈ AC. Kẻ IM // BK (M ∈ AC), KN // CI (N ∈ AB). Chứng minh MN // BC.
Cho tam giác ABC có cạnh BC = 10 cm. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC lần lượt tại M và N. Tính độ dài DM và EN.
Cho hình thang ABCD (AB // CD) và DE = EC (Hình 8). Gọi O là giao điểm của AC và BD, K là giao điểm của EO và AB. Trong các khẳng định sau đây, có bao nhiêu khẳng định đúng?
(I) \[\frac{{AK}}{{EC}} = \frac{{KB}}{{DE}}\];
(II) AK = KB ;
(III) \[\frac{{AO}}{{AC}} = \frac{{AB}}{{DC}}\];
(IV) \[\frac{{AK}}{{EC}} = \frac{{OB}}{{OD}}\].
A. 1;
B. 2;
C. 3;
D. 4.
Cho tam giác ABC đều cạnh bằng 1 dm. Gọi E, F lần lượt là trung điẻm AB, AC. Chu vi hình thang EFCB bằng:
A. \[\frac{5}{2}\]dm ;
B. 3 dm ;
C. 3,5 dm ;
D. 4 dm .
Cho hình bình hành ABCD có M, N lần lượt là trung điểm BC, AD. Vẽ MP // BD (P ∈ AC) và NQ // BD (Q ∈ AC). Phát biểu nào sau đây đúng?
A. AQ = QP = PC ;
B. O là trung điểm PQ ;
C. MNPQ là hình bình hành ;
D. MNPQ là hình chữ nhật.
Cho hình vuông ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA (Hình 6). Đẳng thức nào sau đây đúng?
A. SMNPQ = \[\frac{1}{4}\]SABCD ;
B. SMNPQ = \[\frac{1}{3}\]SABCD ;
C. SMNPQ = SABCD ;
D. SMNPQ = \[\frac{1}{2}\]SABCD .
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
© 2021 Vietjack. All Rights Reserved.