Nêu ví dụ về một mệnh đề đúng và một mệnh đề sai.
+ Ví dụ về mệnh đề đúng:
- “Số 9 là hợp số”;
- “Tam giác đều có 3 cạnh bằng nhau”;
- “Số 10 chia hết cho cả 2 và 5”;
…
+ Ví dụ về mệnh đề sai:
- “Số nguyên tố nhỏ nhất là 3”, (mệnh đề này sai vì số nguyên tố nhỏ nhất là 2);
- “Số 10 chia hết cho cả 2, 3 và 5”, (sai vì 10 không chia hết cho 3);
- “Hình chữ nhật có 4 góc không bằng nhau”, (sai vì hình chữ nhật có 4 góc vuông, bằng nhau);
…
Em có thể chọn một trong các mệnh đề trên để trả lời câu hỏi.
Lý thuyết Mệnh đề:
- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.
- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.
Chú ý:
- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.
- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.
- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.
Bài tập liên quan:
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
a) , x2 ≠ 2x – 2;
b) , x2 ≤ 2x – 1;
c) ;
d) , x2 – x + 1 < 0.
Cách giải:
a) Phủ định của mệnh đề “ , x2 ≠ 2x – 2” là mệnh đề “ , x2 = 2x – 2”.
Mệnh đề phủ định trên là mệnh đề sai, thật vậy ta xét phương trình x2 = 2x – 2
⇔ x2 – 2x + 2 = 0
Đây là phương trình bậc hai với ∆' = (– 1)2 – 1 . 2 = – 1 < 0
Do đó phương trình vô nghiệm trên tập số thực.
Nghĩa là x2 ≠ 2x – 2 với mọi số thực x.
Vậy mệnh đề phủ định trên là mệnh đề sai.
b) Phủ định của mệnh đề “ , x2 ≤ 2x – 1” là mệnh đề “ , x2 > 2x – 1”.
Mệnh đề phủ định này là mệnh đề đúng. Để chứng minh mệnh đề đúng, ta chỉ cần chỉ ra một giá trị cụ thể của x để nhận được mệnh đề đúng.
Thật vậy, chọn x = 2, ta thấy 22 = 4 và 2 . 2 – 1 = 4 – 1 = 3, vì 4 > 3 nên 22 > 2 . 2 – 1.
Vậy mệnh đề phủ định là mệnh đề đúng.
c) Phủ định của mệnh đề “ ” là mệnh đề “ ”.
Mệnh đề phủ định trên là mệnh đề sai. Thật vậy, ta chỉ cần lấy bất kì một giá trị x để nhận được mệnh đề sai.
Chọn x = 4, ta thấy > 2.
Vậy mệnh đề phủ định là mệnh đề sai.
d) Phủ định của mệnh đề “ , x2 – x + 1 < 0” là mệnh đề “ , x2 – x + 1 ≥ 0”.
Mệnh đề phủ định này là mệnh đề đúng.
Ta có: x2 – x + 1 = .
Tham khảo thêm một số tài liệu liên quan:
Dùng kí hiệu “ ” hoặc “ ” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó;
b) Mọi số thực cộng với 0 đều bằng chính nó.
Bạn An nói: “Mọi số thực đều có bình phương là một số không âm”.
Bạn Bình phủ định lại câu nói của bạn An: “Có một số thực mà bình phương của nó là một số âm”.
a) Sử dụng kí hiệu “ ” để viết mệnh đề của bạn An.
b) Sử dụng kí hiệu “ ” để viết mệnh đề của bạn Bình.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
a) , x2 ≠ 2x – 2;
b) , x2 ≤ 2x – 1;
c) ;
d) , x2 – x + 1 < 0.
Trong các phát biểu sau, phát biểu nào là mệnh đề toán học?
a) Tích hai số thực trái dấu là một số thực âm.
b) Mọi số tự nhiên đều là số dương.
c) Có sự sống ngoài Trái Đất.
d) Ngày 1 tháng 5 là ngày Quốc tế Lao động.
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
P: “5,15 là một số hữu tỉ”;
Q: “ 2 023 là số chẵn”.
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó:
a) A: “ là một phân số”;
b) B: “Phương trình x2 + 3x + 2 = 0 có nghiệm”;
c) C: “22 + 23 = 22 + 3”;
d) D: “Số 2 025 chia hết cho 15”.
Cho n là số tự nhiên. Xét các mệnh đề:
P: “n là một số tự nhiên chia hết cho 16”;
Q: “n là một số tự nhiên chia hết cho 8”;
a) Phát biểu mệnh đề P ⇒ Q. Nhận xét tính đúng sai của mệnh đề đó.
b) Phát biểu mệnh đề đảo của mệnh đề P ⇒ Q. Nhận xét tính đúng sai của mệnh đề đó.
Xét câu “n chia hết cho 3” với n là số tự nhiên.
a) Ta có thể khẳng định được tính đúng sai của câu trên hay không?
b) Với n = 21 thì câu “21 chia hết cho 3” có phải là mệnh đề toán học hay không? Nếu là mệnh đề toán học thì mệnh đề đó đúng hay sai?
c) Với n = 10 thì câu “10 chia hết cho 3” có phải là mệnh đề toán học hay không? Nếu là mệnh đề toán học thì mệnh đề đó đúng hay sai?
Cho tam giác ABC. Xét mệnh đề dạng P ⇒ Q như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có AB2 + AC2 = BC2”.
Phát biểu mệnh đề Q ⇒ P và xác định tính đúng sai của hai mệnh đề P ⇒ Q và Q ⇒ P.
Cho mệnh đề “n chia hết cho 3” với n là số tự nhiên.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” có phải là mệnh đề không?
b) Phát biểu “Tồn tại số tự nhiên n chia hết cho 3” có phải là mệnh đề không?
Hai bạn Kiên và Cường đang tranh luận với nhau.
Kiên nói: “Số 23 là số nguyên tố”.
Cường nói: “Số 23 không là số nguyên tố”.
Em có nhận xét gì về hai câu phát biểu của Kiên và Cường?
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”;
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề P ⇔ Q bằng bốn cách.