Chứng minh rằng với mọi góc α (0° ≤ α ≤ 180°), ta đều có:
a) cos2α + sin2α = 1;
b) tanα . cotα = 1 (0° < α < 180°, α ≠ 90°).
c) 1 + tan2α = (α ≠ 90°);
d) 1 + cot2 α = (0° < α < 180°).
a) Với mỗi góc α (0° ≤ α ≤ 180°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho .
Gọi P, Q tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.
Áp dụng định lý Pythagore cho tam giác OPM vuông tại P có cạnh huyền OM = 1.
Ta có: OP2 + MP2 = OM2
Mà OP = |x0| ; MP = OQ = y0 và OM = 1
Suy ra : |x0|2 + y02 = 1 tức là x02 + y02 = 1 (vì |x0|2 = x02)
Mặt khác, theo định nghĩa giá trị lượng giác của một góc ta có:
sinα = y0
cosα = x0
Suy ra cos2 α + sin 2 α = x02 + y02 = 1
Vậy sin 2 α + cos2 α = 1.
b) Với mỗi góc α (0° < α < 180°, α ≠ 90°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho .
Khi đó tanα = ; cotα = ;
Suy ra tanα . cotα = . = 1.
Vậy tanα . cotα = 1 (0° < α < 180°, α ≠ 90°).
c) Với α ≠ 90° ; tanα = và x02 + y02 = sin 2α + cos2α = 1 ; cosα = x0 ⇒ cos2α = x02.
Ta có: 1 + tan2α =
.
Vậy 1 + tan2α = (α ≠ 90°).
d) Với 0° < α < 180° ta có cotα = và sinα = y0 ⇒ sin2 α = y02.
Ta có : 1 + cot2α =
.
Vậy 1 + cot2 α = (0o < α < 180°).
Cho góc α với cosα = . Tính giá trị của biểu thức A = 2sin2α + 5cos2α .
Cho biết sin30° = ; sin60° = ; tan45° = 1. Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của E = 2cos30° + sin150° + tan135°.
Cho biết sinα = , tìm góc α (0° ≤ α ≤ 180°) bằng cách vẽ nửa đường tròn đơn vị.
Cho tam giác ABC. Chứng minh rằng:
a) sinA = sin(B + C);
b) cosA = – cos(B + C).
Tính
A = sin150° + tan135° + cot45°;
B = 2cos30° – 3tan150° + cot135°.
Tìm góc α (0° ≤ α ≤ 180°) trong mỗi trường hợp sau:
a) sinα = ;
b) cosα = ;
c) tanα = – 1;
d) cotα = .
Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O bán kính R = 1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị. Cho trước một góc nhọn α, lấy điểm M trên nửa đường tròn đơn vị sao cho . Giả sử điểm M có tọa độ (x0; y0). Áp dụng cách tính tỉ số lượng giác của một góc nhọn đã học ở lớp 9, chứng tỏ rằng:
sinα = y0; cosα = x0 ; tanα = ; cotα = .
Dùng máy tính cầm tay, hãy thực hiện các yêu cầu dưới đây:
a) Tính: sin168°45'33"; cos17°22'35"; tan156°26'39"; cot 56°36'42".
b) Tìm α (0° ≤ α ≤ 180°) trong các trường hợp sau:
i) sinα = 0,862;
ii) cosα = – 0,567;
iii) tanα = 0,334.
a) Tính cos80°43'51"; tan147°12'25''; cot99°9'19".
b) Tìm α (0° ≤ α ≤ 180°), biết cosα = – 0,723.
Tìm α (0° ≤ α ≤ 180°) trong mỗi trường hợp sau:
a) cosα = ;
b) sinα = 0;
c) tanα = 1;
d) cotα không xác định.
Làm thế nào để mở rộng khái niệm tỉ số lượng giác của góc nhọn cho các góc từ 0° đến 180°?