Chứng minh rằng AB’CD’.A’B’C’D’ có cạnh bằng a (h.1.22b).
ABCD.A’B’C’D’ là hình lập phương cạnh a nên các mặt là các hình vuông cạnh a
Tứ diện AB’CD’ có các cạnh là các đường chéo của các mặt bên hình lập phương ABCD.A’B’C’D’ nên tứ diện AB’CD’ có các cạnh bằng nhau ⇒ AB’CD’ là tứ diện đều
Cạnh của tứ diện đều AB’CD’ bằng độ dài đường chéo của hình vuông cạnh a và bằng a√2
Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một tứ diện đều.
Tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế.
Cho hình bát diện đều ABCDEF.
Chứng minh rằng:
Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Cắt bìa theo mẫu dưới đây (h.123), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2.
Cho hình bát diện đều ABCDEF.
Chứng minh rằng
ABFD, AEFC và BCDE là những hình vuông.