Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (DBC) và . Khi quay các cạnh của tứ diện xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành?
A. 1
B. 2
C. 3
D. 4
Đáp án C
Trong 5 cạnh còn lại (không kể cạnh AB) chỉ có 3 cạnh AD, DB, AC khi quay quanh trục AB tạo ra các hình nón. Do đó có 3 hình nón được tạo thành (như hình bên).
Chú ý: Do , do đó CB quay quanh AB chỉ tạo ra hình tròn mà không phải là hình nón.
Cho hàm số có đồ thị (C). Biết điểm I là giao điểm hai đường tiệm cận của (C). Hỏi I thuộc đường thẳng nào trong các đường sau?
Cho tứ diện đều ABCD cạnh bằng a. Diện tích xung quanh của hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện ABCD là
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Cho hàm số liên tục và có đạo hàm trên ℝ, có đồ thị như hình vẽ bên. Với m là tham số thực bất kì thuộc đoạn , phương trình có bao nhiêu nghiệm thực?
Biết hình bên là đồ thị của một trong bốn hàm số được đưa ra ở các phương án A, B, C, D. Hỏi đó là hàm số nào?
Gọi a là hệ số không chứa x trong khai triển nhị thức Niu tơn
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a.
Cho (H) là hình phẳng giới hạn bởi cung tròn có bán kính R = 2, đường cong và trục hoành (miền tô đậm như hình vẽ). Tính thể tích V của khối tạo thành khi cho hình (H) quay quanh trục Ox.
Trong một lớp có 17 bạn nam và 11 bạn nữ. Hỏi có bao nhiêu cách chọn ra hai bạn, trong đó có một bạn nam và một bạn nữ?
Trong không gian với hệ tọa độ Oxyz, cho điểm . Điểm nào sau đây là hình chiếu vuông góc của điểm A trên mặt phẳng (Oyz)?
Cho hàm số có bảng biến thiên như sau
Hàm số có bao nhiêu điểm cực trị?