Cho lăng trụ tam giác ABC.A’B’C’ có . Hãy phân tích (hay biểu thị) các vectơ qua các vectơ
Cho hình hộp ABCD.A’B’C’D’. Hãy kể tên các vecto có điểm đầu và điểm cuối là các đỉnh của hình hộp và bằng vecto
Cho hình hộp ABCD.EFGH. Hãy thực hiện các phép toán sau đây (h.3.2):
a)
b)
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC. chứng minh rằng
Cho hình tứ diện ABCD. Hãy chỉ ra các vecto có điểm đầu là A và điểm cuối là các điểm còn lại của hình tứ diện. Các vecto đó có cùng nằm trong một mặt phẳng không?
Cho hình hộp ABCD.EFGH. Gọi I và K lần lượt là trung điểm của các cạnh AB và BC. Chứng minh rằng các đường thẳng IK và ED song song với mặt phẳng (AFC). Từ đó suy ra ba vecto đồng phẳng.
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN và P là một điểm bất kỳ trong không gian. Chứng minh rằng :
Cho ba vecto trong không gian. Chứng minh rằng nếu và một trong ba số m, n, p khác không thì ba vecto đồng phẳng
Cho hình bình hành ABCD. Gọi S là một điểm nằm ngoài mặt phẳng (ABCD). Chứng minh rằng:
Cho hình lăng trụ tứ giác ABCD.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB', CC', DD'lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của hình lăng trụ. Hãy chỉ ra các vectơ:
Cho hai vecto và đều khác vecto . Hãy xác định vecto và giải thích tại sao ba vecto đồng phẳng
Trong không gian cho hai vecto và đều khác vecto không. Hãy xác định các vecto
Cho hình tứ diện ABCD. Gọi M và N lần lượt là các trung điểm của AB và CD.