Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
A.
B.
C.
D.
Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình
chóp S.EABC .
Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.
Sử dụng công thức tính nhanh
với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính
đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp
Sử dụng công thức tính diện tích mặt cầu
Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)
Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)
Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng
là đường tròn ngoại tiếp tam giác ABC
Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.
Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC
Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là
Gọi S là tập hợp tất cả các giá trị của tham số và phương trình có nghiệm duy nhất. Tìm số phân tử của S .
Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chạm dần đều với vận tốc , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, và SA vuông góc với đáy ABCD. Tính sin với là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
Một hình trụ có bán kính đáy bằng chiều cao và bằng a. Một hình vuông ABCD có AB;CD là 2 dây cung của 2 đường tròn đáy và mặt phẳng (ABCD) không vuông góc với đáy. Diện tích hình vuông đó bằng .
Cho là hai hàm số liên tục trên . Chọn mệnh đề sai trong các mệnh đề sau
Cho hai số thực a, b thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cos với là góc tạo bởi (SAC) và (SCD).
Cho hình chóp đều S.ABCD có cạnh đáy bằng a , góc giữa cạnh bên và mặt đáy bằng . Tính thể tích của khối chóp S.ABCD theo a .
Cho hình lăng trụ đứng ABC.A' B' C' có đáy ABC là tam giác vuông tại A, biết AB = a, AC = 2a và A' B = 3a. Tính thể tích của khối lăng trụ ABC.A' B' C'.
Gọi (S) là mặt cầu đi qua 4 điểm A(2;0;0),B(1;3;0),C(-1;0;3),D(1;2;3) . Tính bán kính R của (S).