A.
B.
C.
D.
Đáp án C
Gọi O là trọng tâm tam giác ABC và I là trung điểm của đoạn thẳng BC
Tam giác ABC đều cạnh nên và chiều cao
Thể tích của khối chóp
Gọi khoảng cách từ điểm A đến mặt phẳng là h
Thể tích của khối chóp
Phương pháp giải
Để tính được khoảng từ điểm A đến mặt phẳng (α) thì điều quan trọng nhất là ta phải xác định được hình chiếu của điểm A trên (α)
Cho trước SA ⊥ Δ; trong đó S ∈ (α) và Δ ⊂ (α)
Bước 1: Dựng AK ⊥ Δ ⇒ Δ ⊥ (SAK) ⇒(α) ⊥ (SAK) và (α) ∩ (SAK) = SK
Bước 2: Dựng AP ⊥ SK ⇒ AP ⊥ (α) ⇒ d(A, (α)) = AP
Bài tập liên quan:
Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a, gọi O là giao điểm của AC và BD. Khoảng cách từ O đến mặt phẳng (SBC) bằng
A. .
B. .
C. .
D. .
Cách giải:
Tham khảo thêm một số tài liệu liên quan:
Cho hàm số có bảng biến thiên như sau:
Tìm tất cả giá trị thực của tham số m sao cho đồ thị của hàm số cắt trục hoành tại 3 điểm phân biệt
Cho hàm số Hàm số có đồ thị như hình vẽ:
Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số đồng biến trên khoảng Số phần tử của tập S là
Cho hàm số có đồ thị như sau
Trong các số có bao nhiêu số dương?
Cho hình lăng trụ đứng có đáy ABC là tam giác đều cạnh a. Cạnh bên Khoảng cách giữa hai đường thẳng A'B và B'C là