Câu hỏi:

23/07/2024 1.6 K

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Trả lời:

verified Giải bởi Vietjack

Do \(0 < a < \frac{\pi }{2}\) nên \(\sin a > 0\).

Áp dụng công thức sin2a + cos2a = 1, ta có:

\[si{n^2}a + {\left( {\frac{3}{5}} \right)^2} = 1\]

\( \Rightarrow si{n^2}a = 1 - {\left( {\frac{3}{5}} \right)^2} = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)

\[ \Rightarrow \sin a = \frac{4}{5}\] (do sina > 0).

Khi đó \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{4}{5}}}{{\frac{3}{5}}} = \frac{4}{3}\).

Áp dụng công thức cộng, ta có:

\(\sin \left( {a + \frac{\pi }{6}} \right) = \sin a\cos \frac{\pi }{6} + \cos a\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{4\sqrt 3 + 3}}{{10}}\);

\(cos\left( {a - \frac{\pi }{3}} \right) = \cos a\,cos\frac{\pi }{3} + \sin a\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\);

\(\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}.1}} = \frac{{\frac{7}{3}}}{{ - \frac{1}{3}}} = - 7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).

Xem đáp án » 02/11/2024 2.7 K

Câu 2:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 20/11/2024 2.3 K

Câu 3:

Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Xem đáp án » 25/11/2024 1.9 K

Câu 4:

Rút gọn biểu thức: \(A = \frac{{\sin 2x}}{{1 + \cos 2x}}\).

Xem đáp án » 23/07/2024 1.8 K

Câu 5:

Cho \(\tan \frac{a}{2} = - 2\). Tính tana.

Xem đáp án » 21/07/2024 1.7 K

Câu 6:

Cho sina + cosa = 1. Tính: sin2a.

Xem đáp án » 23/07/2024 1.3 K

Câu 7:

Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).

Xem đáp án » 22/07/2024 1 K

Câu 8:

Tính cos15°.

Xem đáp án » 23/07/2024 0.9 K

Câu 9:

Tính: \(\sin \frac{\pi }{8},\cos \frac{\pi }{8}\).

Xem đáp án » 23/07/2024 845

Câu 10:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 23/07/2024 800

Câu 11:

Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).

Xem đáp án » 18/12/2024 740

Câu 12:

Tính sin2a, cos2a, tan2a bằng cách thay b = a trong công thức cộng.

Xem đáp án » 22/07/2024 476

Câu 13:

Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:

cos(a + b) + cos(a – b); cos(a + b) – cos(a – b); sin(a + b) + sin(a – b).

Xem đáp án » 15/07/2024 330

Câu 14:

Tính: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\].

Xem đáp án » 18/07/2024 270

Câu hỏi mới nhất

Xem thêm »
Xem thêm »