Cho các tập hợp khác rỗng A= và B = . Tập hợp các giá trị thực của mm để là:
A.
B. (-2;3)
C.
D.
Đáp án C
Các phép toán trên tập hợp
3.1. Giao của hai tập hợp
Tập hợp gồm các phần tử thuộc cả hai tập hợp S và T gọi là giao của hai tập hợp S và T, kí hiệu là S ∩ T.
S ∩ T = {x | x ∈ S và x ∈ T}.
Ví dụ: Cho 2 tập hợp: A = {5; 7; 8} và B = {1; 2; 4; 5; 8}.
Giao của 2 tập hợp trên là tập hợp C = A ∩ B = {5; 8}.
3.2. Hợp của hai tập hợp
- Tập hợp gồm các phần tử thuộc tập hợp S hoặc thuộc tập hợp T gọi là hợp của hai tập hợp S và T, kí hiệu là S ∪ T.
S ∪ T = {x | x ∈ S hoặc x ∈ T}.
Ví dụ: Cho 2 tập hợp: S = {1; 2; 3; 5} và T = {2; 4; 6; 7}.
Tập hợp là hợp của hai tập hợp trên là K = S ∪ T = {1; 2; 3; 4; 5; 6; 7}.
3.3. Hiệu của hai tập hợp
- Hiệu của hai tập hợp S và T là tập hợp gồm các phần tử thuộc S nhưng không thuộc T, kí hiệu là S \ T.
S \ T = {x | x ∈ S và x ∉ T}.
- Nếu T ⊂ S thì S \ T được gọi là phần bù của T trong S, kí hiệu CST.
Chú ý: .
Xem thêm một số kiến thức liên quan:
20 câu Trắc nghiệm Tập hợp và các phép toán trên tập hợp (Kết nối tri thức) có đáp án – Toán lớp 10
Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức) hay, chi tiết | Toán lớp 10
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:
Cho các tập hợp khác rỗng A = (−; m) và B = [2m−2; 2m+2]. Tìm m R để
Cho hai tập hợp A = [1;3] và B = [m; m+1]. Tìm tất cả giá trị của tham số m để BA.
Cho A = . Điều kiện cần và đủ của m sao cho B là tập con của A là:
Cho ba tập hợp:
M: tập hợp các tam giác có 2 góc tù.
N: tập hợp các tam giác có độ dài ba cạnh là ba số nguyên liên tiếp.
P: tập hợp các số nguyên tố chia hết cho 3.
Tập hợp nào là tập hợp rỗng?
Lớp 10A có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả ba môn Toán, Lý, Hoá. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá ) của lớp 10A là:
Cho m là một tham số thực và hai tập hợp khác rỗng A = [1−2m; m+3], B = {8−5m}. Tất cả các giá trị m để là: