b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
b) Vì ABCD là hình vuông nên BD ⊥ AC.
Do SA ⊥ (ABCD) và BD ⊂ (ABCD) nên SA ⊥ BD.
Ta có: BD ⊥ SA, BD ⊥ AC và SA ∩ AC = A trong (SAC).
Suy ra BD ⊥ (SAC).
Gọi O = AC ∩ BD, kẻ OK ⊥ SC (K ∈ SC).
Do BD ⊥ (SAC) và OK ⊂ (SAC) nên BD ⊥ OK.
Ta có: OK ⊥ SC và OK ⊥ BD.
Từ đó ta có đoạn thẳng OK là đoạn vuông góc chung của hai đường thẳng BD và SC nên d(BD, SC) = OK.
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore trong tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Suy ra
Do O = AC ∩ BD và AC, BD là hai đường chéo của hình vuông ABCD.
Suy ra O là trung điểm của AC nên
Do SA ⊥ (ABCD) và AC ⊂ (ABCD) nên SA ⊥ AC.
Áp dụng định lí Pythagore trong tam giác SAC vuông tại A (do SA ⊥ AC) có:
SC2 = SA2 + AC2.
Do đó
Xét ∆SAC và ∆OKC có:
là góc chung
Do đó ∆SAC ᔕ ∆OKC (g.g).
Suy ra (tỉ số đồng dạng)
Nên
Khi đó
Vậy khoảng cách giữa hai đường thẳng BD và SC
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).
Cho hình chóp S.ABC có SA ⊥ (ABC), AI ⊥ BC (I ∈ BC), AH ⊥ SI (H ∈ SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
b) Chứng minh rằng MP // (BCD). Tính khoảng cách từ đường thẳng MP đến mặt phẳng (BCD).
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song Δ và ∆’. Xét điểm A trên đường thẳng Δ.
a) Khoảng cách từ điểm A đến đường thẳng Δ’ có phụ thuộc vào vị trí của điểm A trên đường thẳng Δ hay không? Vì sao?
Trong Hình 73, khuôn cửa phía trên và mép cánh cửa phía dưới gợi nên hình ảnh hai đường thẳng a và b chéo nhau, hai bản lề của cánh cửa nằm trên đường thẳng c.
Quan sát Hình 73 và cho biết đường thẳng c có vừa cắt, vừa vuông góc với cả hai đường thẳng a và b hay không.
b) Khoảng cách đó gợi nên khái niệm nào trong hình học liên quan đến đường thẳng Δ và mặt phẳng (P)?