Giải SGK Toán lớp 6 Bài 3 (Kết nối tri thức): Thứ tự trong tập hợp các số tự nhiên

Tải xuống 5 2.9 K 10

Với giải bài tập Toán lớp 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên chi tiết bám sát nội dung sgk Toán 6 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:

Giải bài tập Toán lớp 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên

Video giải Toán 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên - Kết nối tri thức

Trả lời câu hỏi giữa bài

Giải Toán lớp 6 trang 13 Tập 1

Mở đầu trang 13 Toán lớp 6 Tập 1: Mỗi khi có trận bóng đá hay, người dân lại xếp hàng dài chờ mua vẽ. Nhìn dòng người xếp hàng một, rất dài, Hà tự hỏi: dòng người xếp hàng ấy và dãy số tự nhiên đang học có gì giống nhau nhỉ?

Mở đầu trang 13 Toán lớp 6 Tập 1

Lời giải:

Ta nhận thấy dòng người đang xếp hàng dài ấy giống với thứ tự trong tập hợp số tự nhiên. 

Khi xếp hàng thì có người đứng trước, người đứng sau, giống như trong tập hợp số tự nhiên có số liền trước và số liền sau,…

Hoạt động 1 trang 13 Toán lớp 6 Tập 1: Trong hai điểm 5 và 8 trên tia số, điểm nào nằm trên trái, điểm nào nằm bên phải điểm kia?

Lời giải:

Hoạt động 1 trang 13 Toán lớp 6 Tập 1

Dựa vào tia số ta nhận thấy: 

+) Do 5 < 8 điểm 5 nằm bên trái điểm 8;

+) Do 8 > 5 điểm 8 nằm bên phải điểm 5.

Hoạt động 2 trang 13 Toán lớp 6 Tập 1Điểm biểu diễn số tự nhiên nào nằm ngay bên trái điểm 8?

Điểm biểu diễn số tự nhiên nào nằm ngay bên phải điểm 8?

Lời giải:

Hoạt động 1 trang 13 Toán lớp 6 Tập 1

Điểm biểu diễn số tự nhiên 7 (điểm 7) nằm ngay bên trái điểm 8.

Điểm biểu diễn số tự nhiên 9 (điểm 9) nằm ngay bên phải điểm 8.

Hoạt động 3 trang 13 Toán lớp 6 Tập 1: Cho n là một số tự nhiên nhỏ hơn 7. Theo em, điểm n nằm bên trái hay bên phải điểm 7?

Lời giải:

Vì n là một số tự nhiên nhỏ hơn 7 hay n < 7 nên điểm n nằm bên trái điểm 7.

Giải Toán lớp 6 trang 14 Tập 1

Luyện tập trang 14 Toán lớp 6 Tập 1a) Hãy so sánh hai số tự nhiên sau đây, dùng kí hiệu “<” hay “>” để viết kết quả: m = 12 036 001 và n = 12 035 987.

b) Trên tia số (nằm ngang), trong hai điểm m và n, điểm nào nằm trước?

Lời giải:

a) Ta so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải, nhận thấy ở hàng chục triệu, triệu, trăm nghìn, chục nghìn có các chữ số giống nhau, nhưng ở hàng nghìn ta thấy 6 > 5 nên 12 036 001 > 12 035 987 do đó m > n.

b) Vì m > n hay n < m nên trên tia số (nằm ngang) điểm n nằm trước điểm m.

Vận dụng trang 14 Toán lớp 6 Tập 1Theo dõi kết quả bán hàng trong ngày của một cửa hàng, người ta nhận thấy:

Số tiền thu được vào buổi sáng nhiều hơn vào buổi chiều;

Số tiền thu được vào buổi tối ít hơn vào buổi chiều.

Hãy so sánh số tiền thu được (đều là số tự nhiên) của cửa hàng đó vào buổi sáng và buổi tối.

Lời giải:

Gọi số tiền cửa hàng đó thu được vào buổi sáng, buổi chiều và buổi tối lần lượt là a, b, c (a, b, c là các số tự nhiên)

Số tiền thu được vào buổi sáng nhiều hơn vào buổi chiều nên a > b (1)

Số tiền thu được vào buổi tối ít hơn vào buổi chiều nên c < b hay b > c (2)

Theo tính chất bắc cầu: vì a > b (theo 1), b > c (theo 2) nên a > c. Do đó số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.

Vậy số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.

Câu hỏi trang 14 Toán lớp 6 Tập 1Trong các số: 3; 5; 8; 9, số nào thuộc tập hợp A = {x ∈ ℕ | x ≥ 5}, số nào thuộc tập hợp B = {x ∈ ℕ | x ≤ 5}?

Lời giải:

+) Vì A = {x ∈ ℕ | x ≥ 5} nên tập hợp A là những số tự nhiên lớn hơn hoặc bằng 5.

Do đó trong các số đã cho, các số thuộc tập hợp A là: 5; 8; 9.

+) Vì B = {x ∈ ℕ | x ≤ 5} nên tập hợp B là tập hợp những số tự nhiên nhỏ hơn hoặc bằng 5.

Do đó trong các số đã cho, các số thuộc tập hợp B là: 3; 5.

Bài tập

Bài 1.13 trang 14 Toán lớp 6 Tập 1: Viết thêm các số liền trước và liền sau của hai số 3 532 và 3 529 để được sáu số tự nhiên rồi sắp xếp sáu số tự nhiên đó theo thứ tự từ bé đến lớn.

Lời giải:

Số liền trước của số 3532 là: 3531

Số liền sau của số 3532 là: 3533

Số liền trước của số 3529 là: 3528

Số liền sau của số 3529 là: 3530

Ta thu được 6 số tự nhiên là:

3532; 3531; 3533; 3528; 3529; 3530

Vì 3528 < 3529 < 3530 < 3531 < 3532 < 3533

Sáu số trên được sắp xếp theo thứ tự từ bé đến lớn là:

3528; 3529; 3530; 3531; 3532; 3533.

Bài 1.14 trang 14 Toán lớp 6 Tập 1: Cho ba số tự nhiên a, b, c, trong đó a là số nhỏ nhất. Biết rằng trên tia số, điểm b nằm giữa hai điểm a và c. Hãy dùng kí hiệu "<" để mô tả thứ tự của ba số a, b, c. Cho ví dụ bằng số cụ thể.

Lời giải:

Vì số a nhỏ nhất nên điểm a nằm bên trái hai điểm b và c.

Mà điểm b nằm giữa hai điểm a và c nên điểm b nằm bên trái điểm c

Do đó b < c

Vì a bé nhất nên ta có a < b < c

* Ví dụ: a = 5; b = 7; c = 8 thỏa mãn a < b < c (do 5 < 7 < 8)

Số 5 bé nhất và điểm 7 nằm giữa hai điểm 5 và 8 trên tia số.

Bài 1.15 trang 14 Toán lớp 6 Tập 1: Liệt kê các phần tử của mỗi tập hợp sau:

a) M = {x ∈ ℕ | 10 ≤ x < 15}

b) K = {x ∈ ℕ* | x ≤ 3}

c) L = {x ∈ ℕ | x ≤ 3}

Lời giải:

a) M = {x ∈ ℕ | 10 ≤ x < 15}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy M là tập hợp các số tự nhiên lớn hơn hoặc bằng 10 và nhỏ hơn 15, đó là các số: 10; 11; 12; 13; 14.

Vậy bằng cách cách liệt kê các phần tử, ta có: M = {10; 11; 12; 13; 14}.

b) K = {x ∈ ℕ* | x ≤ 3}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy K là tập hợp các số tự nhiên x khác 0 (do x ∈ ℕ*) thỏa mãn x nhỏ hơn hoặc bằng 3, do đó x là các số: 1; 2; 3.

Vậy bằng cách cách liệt kê các phần tử, ta có: K = {1; 2; 3}.

c) L = {x ∈ ℕ | x ≤ 3}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy L là tập hợp các số tự nhiên nhỏ hơn hoặc bằng 3, đó là các số: 0; 1; 2; 3.

Do đó bằng cách cách liệt kê các phần tử, ta có: L = {0; 1; 2; 3}.

Bài 1.16 trang 14 Toán lớp 6 Tập 1: Ba bạn An, Bắc, Cường dựng cố định một cây sào thẳng đứng rồi đánh dấu chiều cao của các bạn lên đó bởi ba điểm. Cường đặt tên các điểm đó theo thứ tự từ dưới lên là A, B, C và giải thích rằng điểm A ứng với chiều cao của bạn An, B ứng với chiều cao bạn Bắc và C ứng với chiều cao của Cường. Biết rằng bạn An cao 150cm, bạn Bắc cao 153cm, bạn Cường cao 148cm. Theo em, Cường giải thích như thế có đúng không? Nếu không thì phải sửa như nào cho đúng?

Lời giải:

Vì cách đặt tên các điểm được đánh dấu tương tự như việc đặt tên các điểm trên tia số.

Chiều cao của các bạn theo thứ tự tăng dần là 148cm, 150cm, 153cm (do 148 < 150 < 153) ứng với chiều cao của Cường, An và Bắc

Do vậy cần đánh dấu các điểm theo thứ tự từ dưới lên là C, A, B.

Vì thế mà Cường đặt tên các điểm đó theo thứ tự từ dưới lên là A, B, C và giải thích rằng điểm A ứng với chiều cao của bạn An, B ứng với chiều cao bạn Bắc và C ứng với chiều cao của Cường là sai.

Lý thuyết Thứ tự trong tập hợp các số tự nhiên

+ Ta đã biết tập các số tự nhiên được kí hiệu là N, nghĩa là N = {0; 1; 2; 3;...}. Mỗi phần tử 0; 1; 2; 3; … được biểu diễn bởi một điểm trên tia số gốc 0 như hình vẽ:

Thứ tự trong tập hợp các số tự nhiên | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 

+ Trong hai số tự nhiên khác nhau, luôn có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì trên tia số nằm ngang điểm a nằm bên trái điểm b. Khi đó, ta viết a < b hoặc b > a. Ta còn nói: điểm a nằm trước điểm b, hoặc điểm b nằm sau điểm a.

+ Mỗi số tự nhiên có đúng một số liền sau, chẳng hạn 9 là số liền sau của 8 (còn 8 là số liền trước của 9). Hai số 8 và 9 là hai số tự nhiên liên tiếp.

+ Nếu a < b và b < c thì a < c (tính chất bắc cầu). Chẳng hạn a < 5 và 5 < 7 suy ra a < 7.

Ví dụ 1. Viết thêm các số liền trước và số liền sau của hai số 2 567 và 3 012 để được sáu số tự nhiên và sắp xếp sáu số đó theo thứ tự giảm dần.

Lời giải

Số liền trước 2 567 là: 2 566;

Số liền sau 2 567 là: 2 568;

Số liền trước 3 012 là: 3 011;

Số liền sau 3 012 là 3 013;

Sắp xếp các số theo thứ tự giảm dần là: 3 013; 3 012; 3 011; 2 568; 2 567; 2 566.

+ Kí hiệu "≤ "  và "≥"

Ta còn dùng kí hiệu a ≤ b (đọc là “a nhỏ hơn hoặc bằng b”) để nói “a < b hoặc a = b”.

Ta còn dùng kí hiệu a ≥ b (đọc là “a lớn hơn hoặc bằng b”) để nói “a > b hoặc a = b”.

Tính chất bắc cầu còn có thể viết: nếu a ≤ b và b ≤ c thì a ≤ c .

Ví dụ 2. Cho tập hợp A = {x ∈ N* | x ≤ 14}. Hãy liệt kê các phần tử của tập hợp A.

Lời giải

Các số tự nhiên khác không nhỏ hơn hoặc bằng 14 là: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 12; 14.

A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 12; 14} .

Bài giảng Toán 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên - Kết nối tri thức

Xem thêm các bài giải SGK Toán lớp 6 Kết nối tri thức hay, chi tiết khác:

Bài 2: Cách ghi số tự nhiên

Bài 4: Phép cộng và phép trừ số tự nhiên

Bài 5: Phép nhân và phép chia số tự nhiên

Luyện tập chung trang 21

Tài liệu có 5 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống