Với giải bài tập Toán lớp 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên chi tiết bám sát nội dung sgk Toán 6 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải bài tập Toán lớp 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên
Video giải Toán 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên - Kết nối tri thức
Trả lời câu hỏi giữa bài
Giải Toán lớp 6 trang 13 Tập 1
Lời giải:
Ta nhận thấy dòng người đang xếp hàng dài ấy giống với thứ tự trong tập hợp số tự nhiên.
Khi xếp hàng thì có người đứng trước, người đứng sau, giống như trong tập hợp số tự nhiên có số liền trước và số liền sau,…
Lời giải:
Dựa vào tia số ta nhận thấy:
+) Do 5 < 8 điểm 5 nằm bên trái điểm 8;
+) Do 8 > 5 điểm 8 nằm bên phải điểm 5.
Hoạt động 2 trang 13 Toán lớp 6 Tập 1: Điểm biểu diễn số tự nhiên nào nằm ngay bên trái điểm 8?
Điểm biểu diễn số tự nhiên nào nằm ngay bên phải điểm 8?
Lời giải:
Điểm biểu diễn số tự nhiên 7 (điểm 7) nằm ngay bên trái điểm 8.
Điểm biểu diễn số tự nhiên 9 (điểm 9) nằm ngay bên phải điểm 8.
Lời giải:
Vì n là một số tự nhiên nhỏ hơn 7 hay n < 7 nên điểm n nằm bên trái điểm 7.
Giải Toán lớp 6 trang 14 Tập 1
b) Trên tia số (nằm ngang), trong hai điểm m và n, điểm nào nằm trước?
Lời giải:
a) Ta so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải, nhận thấy ở hàng chục triệu, triệu, trăm nghìn, chục nghìn có các chữ số giống nhau, nhưng ở hàng nghìn ta thấy 6 > 5 nên 12 036 001 > 12 035 987 do đó m > n.
b) Vì m > n hay n < m nên trên tia số (nằm ngang) điểm n nằm trước điểm m.
Số tiền thu được vào buổi sáng nhiều hơn vào buổi chiều;
Số tiền thu được vào buổi tối ít hơn vào buổi chiều.
Hãy so sánh số tiền thu được (đều là số tự nhiên) của cửa hàng đó vào buổi sáng và buổi tối.
Lời giải:
Gọi số tiền cửa hàng đó thu được vào buổi sáng, buổi chiều và buổi tối lần lượt là a, b, c (a, b, c là các số tự nhiên)
Số tiền thu được vào buổi sáng nhiều hơn vào buổi chiều nên a > b (1)
Số tiền thu được vào buổi tối ít hơn vào buổi chiều nên c < b hay b > c (2)
Theo tính chất bắc cầu: vì a > b (theo 1), b > c (theo 2) nên a > c. Do đó số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.
Vậy số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.
Lời giải:
+) Vì A = {x ∈ ℕ | x ≥ 5} nên tập hợp A là những số tự nhiên lớn hơn hoặc bằng 5.
Do đó trong các số đã cho, các số thuộc tập hợp A là: 5; 8; 9.
+) Vì B = {x ∈ ℕ | x ≤ 5} nên tập hợp B là tập hợp những số tự nhiên nhỏ hơn hoặc bằng 5.
Do đó trong các số đã cho, các số thuộc tập hợp B là: 3; 5.
Bài tập
Lời giải:
Số liền trước của số 3532 là: 3531
Số liền sau của số 3532 là: 3533
Số liền trước của số 3529 là: 3528
Số liền sau của số 3529 là: 3530
Ta thu được 6 số tự nhiên là:
3532; 3531; 3533; 3528; 3529; 3530
Vì 3528 < 3529 < 3530 < 3531 < 3532 < 3533
Sáu số trên được sắp xếp theo thứ tự từ bé đến lớn là:
3528; 3529; 3530; 3531; 3532; 3533.
Lời giải:
Vì số a nhỏ nhất nên điểm a nằm bên trái hai điểm b và c.
Mà điểm b nằm giữa hai điểm a và c nên điểm b nằm bên trái điểm c
Do đó b < c
Vì a bé nhất nên ta có a < b < c
* Ví dụ: a = 5; b = 7; c = 8 thỏa mãn a < b < c (do 5 < 7 < 8)
Số 5 bé nhất và điểm 7 nằm giữa hai điểm 5 và 8 trên tia số.
Bài 1.15 trang 14 Toán lớp 6 Tập 1: Liệt kê các phần tử của mỗi tập hợp sau:
a) M = {x ∈ ℕ | 10 ≤ x < 15}
b) K = {x ∈ ℕ* | x ≤ 3}
c) L = {x ∈ ℕ | x ≤ 3}
Lời giải:
a) M = {x ∈ ℕ | 10 ≤ x < 15}
Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy M là tập hợp các số tự nhiên lớn hơn hoặc bằng 10 và nhỏ hơn 15, đó là các số: 10; 11; 12; 13; 14.
Vậy bằng cách cách liệt kê các phần tử, ta có: M = {10; 11; 12; 13; 14}.
b) K = {x ∈ ℕ* | x ≤ 3}
Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy K là tập hợp các số tự nhiên x khác 0 (do x ∈ ℕ*) thỏa mãn x nhỏ hơn hoặc bằng 3, do đó x là các số: 1; 2; 3.
Vậy bằng cách cách liệt kê các phần tử, ta có: K = {1; 2; 3}.
c) L = {x ∈ ℕ | x ≤ 3}
Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy L là tập hợp các số tự nhiên nhỏ hơn hoặc bằng 3, đó là các số: 0; 1; 2; 3.
Do đó bằng cách cách liệt kê các phần tử, ta có: L = {0; 1; 2; 3}.
Lời giải:
Vì cách đặt tên các điểm được đánh dấu tương tự như việc đặt tên các điểm trên tia số.
Chiều cao của các bạn theo thứ tự tăng dần là 148cm, 150cm, 153cm (do 148 < 150 < 153) ứng với chiều cao của Cường, An và Bắc
Do vậy cần đánh dấu các điểm theo thứ tự từ dưới lên là C, A, B.
Vì thế mà Cường đặt tên các điểm đó theo thứ tự từ dưới lên là A, B, C và giải thích rằng điểm A ứng với chiều cao của bạn An, B ứng với chiều cao bạn Bắc và C ứng với chiều cao của Cường là sai.
Lý thuyết Thứ tự trong tập hợp các số tự nhiên
+ Ta đã biết tập các số tự nhiên được kí hiệu là N, nghĩa là N = {0; 1; 2; 3;...}. Mỗi phần tử 0; 1; 2; 3; … được biểu diễn bởi một điểm trên tia số gốc 0 như hình vẽ:
+ Trong hai số tự nhiên khác nhau, luôn có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì trên tia số nằm ngang điểm a nằm bên trái điểm b. Khi đó, ta viết a < b hoặc b > a. Ta còn nói: điểm a nằm trước điểm b, hoặc điểm b nằm sau điểm a.
+ Mỗi số tự nhiên có đúng một số liền sau, chẳng hạn 9 là số liền sau của 8 (còn 8 là số liền trước của 9). Hai số 8 và 9 là hai số tự nhiên liên tiếp.
+ Nếu a < b và b < c thì a < c (tính chất bắc cầu). Chẳng hạn a < 5 và 5 < 7 suy ra a < 7.
Ví dụ 1. Viết thêm các số liền trước và số liền sau của hai số 2 567 và 3 012 để được sáu số tự nhiên và sắp xếp sáu số đó theo thứ tự giảm dần.
Lời giải
Số liền trước 2 567 là: 2 566;
Số liền sau 2 567 là: 2 568;
Số liền trước 3 012 là: 3 011;
Số liền sau 3 012 là 3 013;
Sắp xếp các số theo thứ tự giảm dần là: 3 013; 3 012; 3 011; 2 568; 2 567; 2 566.
+ Kí hiệu "≤ " và "≥"
Ta còn dùng kí hiệu a ≤ b (đọc là “a nhỏ hơn hoặc bằng b”) để nói “a < b hoặc a = b”.
Ta còn dùng kí hiệu a ≥ b (đọc là “a lớn hơn hoặc bằng b”) để nói “a > b hoặc a = b”.
Tính chất bắc cầu còn có thể viết: nếu a ≤ b và b ≤ c thì a ≤ c .
Ví dụ 2. Cho tập hợp A = {x ∈ N* | x ≤ 14}. Hãy liệt kê các phần tử của tập hợp A.
Lời giải
Các số tự nhiên khác không nhỏ hơn hoặc bằng 14 là: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 12; 14.
A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 12; 14} .
Bài giảng Toán 6 Bài 3: Thứ tự trong tập hợp các số tự nhiên - Kết nối tri thức
Xem thêm các bài giải SGK Toán lớp 6 Kết nối tri thức hay, chi tiết khác:
Bài 4: Phép cộng và phép trừ số tự nhiên
Bài 5: Phép nhân và phép chia số tự nhiên