Xét tính tăng, giảm của các dãy số sau:
c) (tn) với tn = (– 1)n . n2.
c) Ta có: tn+1 = (– 1)n+1 . (n + 1)2
Xét hiệu: tn+1 – tn = (– 1)n+1 . (n + 1)2 – ( – 1)n.n2
Với n chẵn:
tn+1 – tn = 0 – (n + 1)2 – n2 < 0, ∀n ∈ ℕ*.
Suy ra tn+1 < tn, ∀n ∈ ℕ*.
Vì vậy dãy số (tn) là dãy số giảm.
Với n lẻ:
tn+1 – tn = (n + 1)2 + n2 > 0, ∀n ∈ ℕ*.
Suy ra tn+1 > tn, ∀n ∈ ℕ*.
Vì vậy dãy số (tn) là dãy số tăng.
Tìm u2, u3 và dự đoán công thức số hạng tổng quát của un dãy số: .
Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp nhau hơn kém nhau 1 cột gỗ (Hình 2).
a) Gọi u1 = 25 là số cột gỗ có ở hàng dưới cùng của chồng cột gỗ, un là số cột gỗ có ở hàng thứ n tính từ dưới lên trên. Xét tính tăng, giảm của dãy số này.
b) Gọi vt = 14 là số cột gỗ có ở hàng trên cùng của chồng cột gỗ, vn là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới. Xét tính tăng, giảm của dãy số này.
Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột dỗ (Hình 1). Gọi un là số cột gỗ nằm ở lớp thứ n tính từ trên xuống và cho biết lớp trên cùng có 14 cột gỗ. Hãy xác định dãy số (un) bằng hai cách:
a) Viết công thức số hạng tổng quát un.
Cho dãy số (un) với . Tìm các giá trị của a để:
a) (un) là dãy số tăng;
b) (un) là dãy số giảm.
Cho 5 hình tròn theo thứ tự có bán kính 1; 2; 3; 4; 5.
a) Viết dãy số chỉ diện tích của 5 hình tròn này.
b) Tìm số hạng đầu và số hạng cuối của dãy số trên.
Cho dãy số (un) với . Chứng minh (un) là dãy số tăng và bị chặn.
Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đó từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?
Cho dãy số (un) xác định bởi: .
a) Chứng minh u2 = 2.3; u3 = 22.3; u4 = 23.3.
b) Dự đoán công thức số hạng tổng quát của dãy số (un).
Cho dãy số:
.
a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
b) Viết năm số hạng đầu tiên của dãy số đã cho.
Gọi u1; u2; u3; ...; un lần lượt là diện tích các tình huống có độ dài cạnh là 1; 2; 3; ...; n. Tính u3 và u4.