Câu hỏi:

09/07/2024 230

Trong hoạt động mở đầu bài học, cho biết khoảng cách giữa hai trạm vô tuyến là 600 km, vận tốc sóng vô tuyến là 300000 km/s và thời gian con tàu nhận được tín hiệu từ hai trạm trên bờ biển luôn cách nhau 0,0012 s (hai trạm vô tuyến phát các tín hiệu cùng một thời điểm). Viết phương trình chính tắc của quỹ đạo hypebol (H) của con tàu.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với tiêu điểm của F1F2, đơn vị trên các trục là km.

Giả sử phương trình chính tắc của (H) là x2a2y2b2=1 (a > 0, b > 0).

Gọi t1 là thời gian con tàu nhận được tín hiệu từ trạm F1; t2 là thời gian con tàu nhận được tín hiệu từ trạm F2, v là vận tốc sóng vô tuyến.

Theo đề bài ta có: |t1 – t2| = 0,0012

=>|vt1 – vt2| = 0,0012v = 0,0012 . 300000 = 360 (km)

=>|MF1 – MF2| = 360 với mọi vị trí của M

=> 2a = 360 => a = 180.

Có khoảng cách giữa hai trạm vô tuyến là 600 km => 2c = 600 => c = 300

b2=c2a2=30021802=57600.

Vậy phương trình chính tắc của (H) là x232400y257600=1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi bay với vận tốc siêu thanh (tốc độ chuyển động lớn hơn tốc độ âm thanh trong cùng môi trường), một máy bay tạo ra một vùng nhiễu động trên mặt đất dọc theo một nhánh của hypebol (H) (Hình 4). Phần nghe rõ nhất tiếng ồn của vùng nói trên được gọi là thảm nhiễu động. Bề rộng của thảm này gấp khoảng 5 lần cao độ của máy bay. Tính cao độ của máy bay, biết bề rộng của thảm nhiễu động được đo cách phía sau máy bay một khoảng là 40 mile (mile (dặm) là đơn vị đo khoảng cách, 1 mile ≈ 1,6 km ) và (H) có phương trình:x2400y2100=1.

Khi bay với vận tốc siêu thanh (tốc độ chuyển động lớn hơn tốc độ âm thanh trong cùng môi trường), một máy bay tạo ra một vùng nhiễu động trên mặt đất dọc theo một nhánh của hypebol (H) (Hình 4). (ảnh 1)

Xem đáp án » 09/07/2024 312

Câu 2:

Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r.

a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Xem đáp án » 19/07/2024 285

Câu 3:

Cho điểm M(x; y) trên hypebol (H):x2a2y2b2=1 và hai đường thẳng Δ1:x+ae=0; Δ2:xae=0 (Hình 7).

Cho điểm M(x; y) trên hypebol (H): x^2/a^2 - y^2/b^2 =1  và hai đường thẳng (ảnh 1)

Gọi d(M; Δ1), d(M; Δ2) lần lượt là khoảng cách từ M đến các đường thẳng Δ1, Δ2.

Ta có: MF1d(M;Δ1)=|a+ex||x+ae|=|a+ex||a+ex|e=e.

Dựa theo cách tính trên, tính MF2d(M;Δ2).

Xem đáp án » 19/07/2024 239

Câu 4:

Lập phương trình chính tắc của hypebol có tiêu cự bằng 26 và khoảng cách giữa hai đường chuẩn bằng 288/13.

Xem đáp án » 30/06/2024 200

Câu 5:

Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km.

a) Lập phương trình chính tắc của (H).

b) Lập công thức tính bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ.

Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km. a) Lập phương trình chính tắc của (H). b) Lập công thức tính bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ. (ảnh 1)

Xem đáp án » 15/07/2024 179

Câu 6:

Lập phương trình chính tắc của hypebol có tiêu cự bằng 20 và khoảng cách giữa hai đường chuẩn bằng 36/5.

Xem đáp án » 15/07/2024 177

Câu 7:

Cho hypebol (H):x2144y225=1.

a) Tìm tâm sai và độ dài hai bán kính qua tiêu của điểm M(13;2512) trên (H).

b) Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng.

c) Tìm điểm N(x; y)  (H) sao cho NF1 = 2NF2 với F1, F2 là hai tiêu điểm của (H).

Xem đáp án » 17/07/2024 174

Câu 8:

Cho điểm M(x; y) nằm trên hypebol (H):x2a2y2b2=1.

a) Chứng minh rằng F1M2 – F2M2 = 4cx.

b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh MF2+MF1=2cxa. Từ đó, chứng minh các công thức: MF1=acaxMF2=acax.

b) Giả sử điểm M(x; y) thuộc nhánh đi qua A2(a; 0) (Hình 5 b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF1 – MF2 = 2a đã biết để chứng minh MF2+MF1=2cxa. Từ đó, chứng minh các công thức: MF1=a+caxMF2=a+cax.

Cho điểm M(x; y) nằm trên hypebol (H): x^2/a^2 - y^2/b^2 = 1 .  a) Chứng minh rằng F1M2 – F2M2 = 4cx.  b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh (ảnh 1)

 

Xem đáp án » 19/07/2024 166

Câu 9:

Tính độ dài hai bán kính qua tiêu của điểm M(x; y) trên hypebol (H):x264y236=1.

Xem đáp án » 09/07/2024 165

Câu 10:

Tính độ dài hai bán kính qua tiêu của đỉnh A2(a; 0) trên hypebol (H): x2a2y2b2=1.

Xem đáp án » 23/07/2024 161

Câu 11:

Cho hypebol (H) với phương trình chính tắc x2a2y2b2=1 và điểm M(x0; y0) nằm trên (H). Các điểm M1(–x0; y0), M2(x0; –y0), M3(–x0; –y0) có thuộc (H) không?

Xem đáp án » 19/07/2024 160

Câu 12:

Tìm toạ độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các hypebol sau:

a) (H1):x24y21=1

b) (H2):x236y264=1

c) (H3):x29y29=1.

Xem đáp án » 18/07/2024 152

Câu 13:

Cho hypebol (H) có tâm sai bằng 2. Chứng minh trục thực và trục ảo của (H) có độ dài bằng nhau.

Xem đáp án » 19/07/2024 138

Câu 14:

Cho hypebol (H):x2a2y2b2=1. Chứng tỏ rằng ca>1.

Xem đáp án » 15/07/2024 135